A Reinforcement-Learning-Based 3-D Estimation of Distribution Algorithm for Fuzzy Distributed Hybrid Flow-Shop Scheduling Considering On-Time-Delivery

计算机科学 作业车间调度 分布估计算法 流水车间调度 数学优化 大规模定制 调度(生产过程) 强化学习 初始化 算法 能源消耗 人工智能 个性化 数学 工程类 布线(电子设计自动化) 万维网 电气工程 程序设计语言 计算机网络
作者
Libao Deng,Yuanzhu Di,Ling Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 1024-1036 被引量:6
标识
DOI:10.1109/tcyb.2023.3336656
摘要

With the increasing level of mass-customization and globalization of competition, environmentally friendly production scheduling for distributed manufacturing considering customer satisfaction has received growing attention. Meanwhile, uncertain scheduling is becoming a force to be considered within intelligent manufacturing industries. However, little research has been found that surveyed the uncertain distributed scheduling considering both energy consumption and customer satisfaction. In this article, the fuzzy distributed hybrid flow-shop scheduling problem considering on-time delivery (FDHFSP-OTD) is addressed, and a 3-D estimation of distribution algorithm (EDA) with reinforcement learning (RL) is proposed to minimize the makespan and total energy consumption while maximizing delivery accuracy. First, two heuristics and a random method are designed and used cooperatively for initialization. Next, an EDA with a 3-D probability matrix is innovated to generate offspring. Then, a biased decoding method based on Q -learning is proposed to adjust the direction of evolution self-adaptively. Moreover, a local intensification strategy is employed for further enhancement of elite solutions. The effect of major parameters is analyzed and the best combination of values is determined through extensive experiments. The numerical results prove the effectiveness of each specially designed strategy and method, and the comparisons with existing algorithms demonstrate the high-potential of the 3D-EDA/RL in solving the FDHFSP-OTD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ding应助猴猿人采纳,获得10
1秒前
Q杰发布了新的文献求助10
1秒前
快乐的冰岚完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
3秒前
4秒前
4秒前
4秒前
111完成签到 ,获得积分10
5秒前
5秒前
5秒前
hchnb1234完成签到,获得积分10
6秒前
Bo完成签到,获得积分10
6秒前
Cgy发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
munire发布了新的文献求助10
7秒前
达西西发布了新的文献求助10
7秒前
墨墨完成签到 ,获得积分10
8秒前
虾米发布了新的文献求助10
8秒前
完美世界应助铁豆采纳,获得20
8秒前
Yapi发布了新的文献求助10
8秒前
小石发布了新的文献求助10
9秒前
9秒前
10秒前
潮汐发布了新的文献求助10
10秒前
dengar发布了新的文献求助10
10秒前
许大脚完成签到 ,获得积分10
10秒前
kang发布了新的文献求助10
11秒前
大个应助Shaka采纳,获得10
11秒前
11秒前
11秒前
zzz发布了新的文献求助10
12秒前
肖善若发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534