A Reinforcement-Learning-Based 3-D Estimation of Distribution Algorithm for Fuzzy Distributed Hybrid Flow-Shop Scheduling Considering On-Time-Delivery

计算机科学 作业车间调度 分布估计算法 流水车间调度 数学优化 大规模定制 调度(生产过程) 强化学习 初始化 算法 能源消耗 人工智能 个性化 数学 工程类 布线(电子设计自动化) 万维网 电气工程 程序设计语言 计算机网络
作者
Libao Deng,Yuanzhu Di,Ling Wang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (2): 1024-1036 被引量:6
标识
DOI:10.1109/tcyb.2023.3336656
摘要

With the increasing level of mass-customization and globalization of competition, environmentally friendly production scheduling for distributed manufacturing considering customer satisfaction has received growing attention. Meanwhile, uncertain scheduling is becoming a force to be considered within intelligent manufacturing industries. However, little research has been found that surveyed the uncertain distributed scheduling considering both energy consumption and customer satisfaction. In this article, the fuzzy distributed hybrid flow-shop scheduling problem considering on-time delivery (FDHFSP-OTD) is addressed, and a 3-D estimation of distribution algorithm (EDA) with reinforcement learning (RL) is proposed to minimize the makespan and total energy consumption while maximizing delivery accuracy. First, two heuristics and a random method are designed and used cooperatively for initialization. Next, an EDA with a 3-D probability matrix is innovated to generate offspring. Then, a biased decoding method based on Q -learning is proposed to adjust the direction of evolution self-adaptively. Moreover, a local intensification strategy is employed for further enhancement of elite solutions. The effect of major parameters is analyzed and the best combination of values is determined through extensive experiments. The numerical results prove the effectiveness of each specially designed strategy and method, and the comparisons with existing algorithms demonstrate the high-potential of the 3D-EDA/RL in solving the FDHFSP-OTD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慈祥的博发布了新的文献求助10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
风中冰香应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
丹丹丹应助科研通管家采纳,获得10
刚刚
郑朗逸完成签到,获得积分10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
Akim应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
陈末应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
GPTea应助科研通管家采纳,获得20
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
2秒前
无所吊谓完成签到,获得积分10
3秒前
哦呵呵发布了新的文献求助10
3秒前
大饼子圆发布了新的文献求助10
3秒前
可悲的科研狗完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
大胆一刀完成签到,获得积分20
4秒前
6秒前
早起困困发布了新的文献求助10
6秒前
科研通AI2S应助成就的孤兰采纳,获得10
7秒前
泓泽完成签到,获得积分10
7秒前
神经蛙发布了新的文献求助10
7秒前
SciGPT应助慈祥的博采纳,获得10
7秒前
善学以致用应助张亚博采纳,获得10
8秒前
王珂珂完成签到,获得积分10
8秒前
9秒前
jjj完成签到,获得积分10
9秒前
爆米花应助活力的焱采纳,获得30
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416714
求助须知:如何正确求助?哪些是违规求助? 4532843
关于积分的说明 14136806
捐赠科研通 4448810
什么是DOI,文献DOI怎么找? 2440430
邀请新用户注册赠送积分活动 1432238
关于科研通互助平台的介绍 1409793