ASSA-UNet: An Efficient UNet-Based Network for Chip Internal Defect Detection

计算机科学 炸薯条 人工智能 灰度 棱锥(几何) 像素 特征提取 计算机视觉 模式识别(心理学) RGB颜色模型 数学 电信 几何学
作者
Siyi Zhou,Qingwang Wang,Hua Wu,Qingbo Wang,Yuanqing Meng,Tao Shen
标识
DOI:10.1109/isctech60480.2023.00036
摘要

Extensive research has been conducted on deep learning-based methods for chip surface defect detection to enhance chip production efficiency and product quality. However, less attention has been given to internal defect detection methods after chip packaging, and practical issues still need to be addressed. Firstly, the detection method needs to have higher real-time performance due to the high degree of automation and large output in chip production. Additionally, the internal image of the chip is generated by X-ray inspection equipment, resulting in a grayscale image that lacks the color characteristics of the RGB image of chip surface. Finally, the deep learning-based detection methods face a challenge due to the very small pixel percentage of the defective chip region. To tackle these challenges, we introduce a highly efficient network named Atrous Spatial Pyramid Pooling (ASPP) and Spatial Attention UNet (ASSA-UNet), which integrates multi-scale feature fusion and attention mechanisms to detect chip internal defects. We thoroughly evaluate the performance of our proposed model on a self-built dataset(CIDX-ray) and compare it with other methods. The experimental results demonstrate the efficient and accurate segmentation of chip internal defects using our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助BioRick采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
希望天下0贩的0应助天天采纳,获得10
2秒前
在水一方应助赵楠采纳,获得10
3秒前
kjding发布了新的文献求助10
4秒前
cldg完成签到,获得积分20
4秒前
sanmu完成签到,获得积分10
4秒前
Watson发布了新的文献求助10
4秒前
drtianyunhong发布了新的文献求助10
5秒前
6秒前
6秒前
义气山灵完成签到,获得积分10
6秒前
牛牛牛完成签到,获得积分10
6秒前
6秒前
气场发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
凹凸先森应助Mon采纳,获得10
8秒前
lu发布了新的文献求助10
9秒前
11秒前
田家溢完成签到,获得积分10
11秒前
脑洞疼应助Daryl采纳,获得10
12秒前
aura发布了新的文献求助10
13秒前
皮皮兔发布了新的文献求助10
13秒前
Marilinta完成签到,获得积分10
13秒前
青易发布了新的文献求助10
14秒前
拜了个拜完成签到,获得积分20
15秒前
呆萌雪晴完成签到,获得积分20
16秒前
巷尾花店发布了新的文献求助50
16秒前
16秒前
丘比特应助washy采纳,获得10
17秒前
20秒前
20秒前
ding应助魔芋爽采纳,获得10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488637
求助须知:如何正确求助?哪些是违规求助? 3076232
关于积分的说明 9144270
捐赠科研通 2768577
什么是DOI,文献DOI怎么找? 1519188
邀请新用户注册赠送积分活动 703703
科研通“疑难数据库(出版商)”最低求助积分说明 701952