ASSA-UNet: An Efficient UNet-Based Network for Chip Internal Defect Detection

计算机科学 炸薯条 人工智能 灰度 棱锥(几何) 像素 特征提取 计算机视觉 模式识别(心理学) RGB颜色模型 数学 电信 几何学
作者
Siyi Zhou,Qingwang Wang,Hua Wu,Qingbo Wang,Yuanqing Meng,Tao Shen
标识
DOI:10.1109/isctech60480.2023.00036
摘要

Extensive research has been conducted on deep learning-based methods for chip surface defect detection to enhance chip production efficiency and product quality. However, less attention has been given to internal defect detection methods after chip packaging, and practical issues still need to be addressed. Firstly, the detection method needs to have higher real-time performance due to the high degree of automation and large output in chip production. Additionally, the internal image of the chip is generated by X-ray inspection equipment, resulting in a grayscale image that lacks the color characteristics of the RGB image of chip surface. Finally, the deep learning-based detection methods face a challenge due to the very small pixel percentage of the defective chip region. To tackle these challenges, we introduce a highly efficient network named Atrous Spatial Pyramid Pooling (ASPP) and Spatial Attention UNet (ASSA-UNet), which integrates multi-scale feature fusion and attention mechanisms to detect chip internal defects. We thoroughly evaluate the performance of our proposed model on a self-built dataset(CIDX-ray) and compare it with other methods. The experimental results demonstrate the efficient and accurate segmentation of chip internal defects using our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SMULJL完成签到,获得积分10
1秒前
2秒前
zzz关闭了zzz文献求助
2秒前
harvey1989完成签到,获得积分10
2秒前
pcr163应助完美冷安采纳,获得50
2秒前
送不送书7完成签到,获得积分10
3秒前
英姑应助和谐的追命采纳,获得10
4秒前
Hello应助于智豪采纳,获得10
4秒前
Hello应助LSY采纳,获得10
6秒前
桐桐应助恒温失效采纳,获得10
6秒前
杜若发布了新的文献求助30
6秒前
汉堡包应助zygclwl采纳,获得10
7秒前
zcD完成签到,获得积分10
8秒前
聪明无颜发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
艺阳完成签到,获得积分10
10秒前
11秒前
11秒前
馒头酶关注了科研通微信公众号
11秒前
只想求文献完成签到,获得积分20
11秒前
cc完成签到,获得积分20
11秒前
12秒前
12秒前
美满的大象完成签到 ,获得积分10
12秒前
12秒前
1111应助别偷我增肌粉采纳,获得10
12秒前
13秒前
13秒前
13秒前
13秒前
tjxhtj完成签到,获得积分10
13秒前
13秒前
14秒前
无限的宫苴完成签到 ,获得积分20
14秒前
华仔应助离歌采纳,获得30
14秒前
健珍发布了新的文献求助10
16秒前
twotwomi发布了新的文献求助10
16秒前
瓜瓜发布了新的文献求助10
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961294
求助须知:如何正确求助?哪些是违规求助? 3507579
关于积分的说明 11136907
捐赠科研通 3240039
什么是DOI,文献DOI怎么找? 1790707
邀请新用户注册赠送积分活动 872450
科研通“疑难数据库(出版商)”最低求助积分说明 803255