High‐Performance Te Nanowires/MoS2/Polyimine Nanocomposite‐Based Self‐Healable, Recyclable and Screen‐Printable Flexible Photodetector for Image Sensing

材料科学 光电探测器 纳米复合材料 纳米线 光电子学 自愈 复合材料 纳米技术 医学 替代医学 病理
作者
Hongyun Peng,Huiqiao Li,Erjuan Guo,Tianyou Zhai
出处
期刊:Advanced Functional Materials [Wiley]
被引量:1
标识
DOI:10.1002/adfm.202314743
摘要

Abstract Intrinsically flexible photodetectors are compelling building blocks for next‐generation wearable optoelectronic systems owing to their distinctive advantages of reliable structural durability and versatile scalability for large‐scale production. However, their practical applications are still impeded by the inferior photodetection performance, irreversible device failure after breakage, and serious e‐waste accumulation after service life. Herein, a high‐performance intrinsically flexible, mechanically durable, self‐healable, closed‐loop recyclable, and screen‐printable Te NWs/MoS 2 nanosheets/polyimine nanocomposite‐based photodetector are designed by engineering‐ordered‐bridged 1D/2D carrier percolation “fast lanes” in dynamic covalent polyimine matrix via a flow‐designed solution‐shearing method. Such a design provides a sixfold, 20.1‐fold, and 6.9‐fold enhancement in carrier mobility, responsivity (11.68 mA W −1 ), and detectivity (1.145 × 10 10 Jones), respectively, as well as stable photoresponse over eight months or after 50 000 bending‐flattening times. Meanwhile, this photodetector presents excellent self‐healing efficiency and repeatable recyclability for device reconfiguration. Furthermore, these merits can be fully integrated onto textile by assembling nacre‐like Te NWs/MoS 2 /polyimine nanocomposite coatings on textiles via screen‐printing processes, enabling programmable patterning of photodetection arrays for large‐area image sensing. This work provides a viable approach for the design of shape‐tunable optoelectronics with reliable mechanical durability and customizable functionalities, demonstrating the tremendous potential for large‐scale applications in wearable optoelectronic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Baozi发布了新的文献求助10
1秒前
jideli发布了新的文献求助10
3秒前
现代的竺完成签到,获得积分20
5秒前
5秒前
春夏爱科研完成签到,获得积分10
5秒前
追寻冬萱完成签到,获得积分10
7秒前
8秒前
8秒前
生动芝麻完成签到,获得积分10
8秒前
11秒前
mouxq发布了新的文献求助10
13秒前
14秒前
Baozi完成签到,获得积分10
16秒前
hhkj发布了新的文献求助10
16秒前
晗月完成签到,获得积分10
17秒前
18秒前
sqk发布了新的文献求助10
20秒前
21秒前
贾克斯发布了新的文献求助10
21秒前
张璋完成签到,获得积分10
21秒前
24秒前
hhkj完成签到,获得积分20
24秒前
都不好听完成签到,获得积分10
27秒前
呀鸭呀发布了新的文献求助50
29秒前
sqk完成签到,获得积分10
30秒前
30秒前
鱼爱吃猫耳朵完成签到,获得积分10
32秒前
石莫言完成签到,获得积分10
32秒前
SciGPT应助都不好听采纳,获得10
32秒前
33秒前
bkagyin应助kk采纳,获得10
35秒前
brianzk1989完成签到,获得积分10
36秒前
萧水白应助如果多年后采纳,获得10
37秒前
38秒前
白水完成签到,获得积分10
40秒前
Akim应助科研通管家采纳,获得10
42秒前
42秒前
8R60d8应助科研通管家采纳,获得10
42秒前
Jasper应助科研通管家采纳,获得10
43秒前
文静不评应助科研通管家采纳,获得10
43秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314062
求助须知:如何正确求助?哪些是违规求助? 2946490
关于积分的说明 8530274
捐赠科研通 2622160
什么是DOI,文献DOI怎么找? 1434341
科研通“疑难数据库(出版商)”最低求助积分说明 665242
邀请新用户注册赠送积分活动 650804