Fully Automated Deep Learning Model for Detecting Proximity of Mandibular Third Molar Root to Inferior Alveolar Canal using Panoramic Radiographs

射线照相术 臼齿 根管 口腔正畸科 下颌管 牙科 下颌磨牙 下颌第三磨牙 医学 放射科
作者
Qiuping Jing,Xiubin Dai,Zhifan Wang,Yuyang Zhou,Yijin Shi,Shengjun Yang,Dongmiao Wang
出处
期刊:Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology [Elsevier BV]
标识
DOI:10.1016/j.oooo.2024.02.011
摘要

Abstract

Objective

This study endeavored to develop a novel fully-automated deep learning model to determine the topographic relationship between mandibular third molar (MM3) roots and inferior alveolar canal (IAC) using panoramic radiographs (PR).

Study Design

A total of 1570 eligible patients with MM3s who had paired PR and cone-beam computed tomography (CBCT) from January 2019 to December 2020 were retrospectively collected and randomly grouped into training (80%), validation (10%), and testing (10%) cohorts. Spatial relationship of MM3/IAC was assessed by CBCT and set as the ground truth. MM3-IACnet, a modified deep learning network based on YOLOv5 (You only look once) was trained to detect MM3/IAC proximity using PR. Its diagnostic performance was further compared with dentists, AlexNet, GoogleNet, VGG-16, ResNet-50, and YOLOv5 in another independent cohort with 100 high-risk MM3 defined as root overlapping with IAC on PR.

Results

The MM3-IACnet performed best in predicting the MM3/IAC proximity as evidenced by the highest accuracy (0.885), precision (0.899), AUC value (0.95) and minimal time-spending compared to other models. Moreover, our MM3-IACnet outperformed other models in MM3/IAC risk prediction in high-risk cases.

Conclusion

MM3-IACnet model can assist clinicians in MM3s risk assessment and treatment planning by detecting MM3/IAC topographic relationship using PR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
曹great完成签到,获得积分10
3秒前
3秒前
彭于晏应助yao采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
瓜瓜完成签到,获得积分10
4秒前
Billy应助泡芙采纳,获得30
4秒前
4秒前
科研通AI2S应助星星掉沟了采纳,获得10
6秒前
cbb发布了新的文献求助10
7秒前
idemipere发布了新的文献求助10
7秒前
独特冷荷给独特冷荷的求助进行了留言
8秒前
8秒前
9秒前
思源应助奇异物质采纳,获得10
9秒前
FashionBoy应助药化行者采纳,获得10
9秒前
慧灰huihui发布了新的文献求助10
10秒前
10秒前
王相博完成签到,获得积分10
11秒前
充电宝应助土豪的雪巧采纳,获得10
12秒前
12秒前
Alan发布了新的文献求助10
13秒前
13秒前
yznfly应助认真哈密瓜采纳,获得30
14秒前
yznfly应助认真哈密瓜采纳,获得30
14秒前
王志霞发布了新的文献求助10
15秒前
15秒前
16秒前
安静的雨完成签到,获得积分10
16秒前
shiyuhangsyh发布了新的文献求助10
18秒前
易酰水烊酸完成签到,获得积分10
18秒前
刘科发布了新的文献求助10
19秒前
万能图书馆应助幽默白易采纳,获得10
19秒前
HHHSean完成签到,获得积分10
19秒前
CR7应助Foldog采纳,获得20
19秒前
Yuri发布了新的文献求助10
20秒前
20秒前
21秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958968
求助须知:如何正确求助?哪些是违规求助? 3505216
关于积分的说明 11123184
捐赠科研通 3236828
什么是DOI,文献DOI怎么找? 1788949
邀请新用户注册赠送积分活动 871455
科研通“疑难数据库(出版商)”最低求助积分说明 802794