亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning–Based Bridge Maintenance Optimization Model for Maximizing Performance within Available Annual Budgets

桥(图论) 工程类 计算机科学 结构工程 可靠性工程 土木工程 生物 解剖
作者
Mahdi Ghafoori,Moatassem Abdallah,Mehmet E. Ozbek
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:29 (4) 被引量:3
标识
DOI:10.1061/jbenf2.beeng-6436
摘要

Effective maintenance planning for bridges is crucial for maintaining their performance, safety, and minimizing maintenance costs. Timely implementation of interventions can improve the performance of bridges and avoid the need for costly interventions. However, bridge maintenance is often delayed because of inadequate planning and budget allocation, as well as resource constraints such as funding. With the availability of historical condition data of bridges in databases such as the National Bridge Inventory (NBI) and National Bridge Elements (NBE), there is an opportunity to use data-driven methods to predict deterioration of bridge elements and optimize their maintenance interventions to maximize the performance of bridges. This paper presents the development of a novel system that uses machine learning (ML) techniques, to predict the condition of concrete bridge elements, and binary linear programming optimization method, to identify the optimal selection of maintenance interventions and their timing, to maximize the performance of bridges while complying with available annual budgets. Four ML methods are explored: decision tree, random forest, gradient boosting, and support vector machines. The results of the ML evaluation show that, while the values of the predictive performance metrics varied for different elements, random forest method had the best performance for all elements. A case study of a concrete bridge is analyzed to evaluate the performance of the system and demonstrate its new capabilities. The case study results show that the developed model identifies optimal maintenance interventions for various annual budgets over a 50-year study period. The primary contributions of this research to the body of knowledge are as follows: (1) the development of a novel system that integrates machine learning techniques and linear programming for predicting bridge element conditions and optimizing maintenance interventions; (2) modeling and predicting the deterioration of bridge elements based on health index metric; and (3) generating long-term maintenance plans for each of the bridge elements to maximize the performance of bridges within available annual budgets. The present system is expected to support decision makers, such as highway agencies, in allocating the limited financial resources for bridge maintenance more efficiently and cost-effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AixLeft完成签到 ,获得积分10
刚刚
liuliu应助多情向日葵采纳,获得10
7秒前
在水一方应助多情向日葵采纳,获得10
7秒前
7秒前
由道罡完成签到 ,获得积分10
7秒前
13秒前
多情向日葵完成签到,获得积分20
17秒前
世良发布了新的文献求助10
19秒前
26秒前
科研小举人完成签到,获得积分10
29秒前
30秒前
YiXianCoA完成签到 ,获得积分10
31秒前
斯文败类应助世良采纳,获得10
32秒前
ceeray23应助科研通管家采纳,获得10
57秒前
归尘应助科研通管家采纳,获得10
57秒前
归尘应助科研通管家采纳,获得10
57秒前
归尘应助科研通管家采纳,获得10
57秒前
归尘应助科研通管家采纳,获得10
57秒前
归尘应助科研通管家采纳,获得10
57秒前
香蕉觅云应助via采纳,获得10
57秒前
归尘应助科研通管家采纳,获得10
57秒前
归尘应助科研通管家采纳,获得10
58秒前
爆米花应助体贴花卷采纳,获得10
1分钟前
浪里白条发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Criminology34完成签到,获得积分0
1分钟前
世良发布了新的文献求助10
1分钟前
领导范儿应助世良采纳,获得10
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
科研通AI6应助体贴花卷采纳,获得10
1分钟前
1分钟前
1分钟前
麻辣香锅发布了新的文献求助10
1分钟前
1分钟前
1分钟前
世良发布了新的文献求助10
1分钟前
cijing完成签到,获得积分10
1分钟前
洁净的钢笔完成签到 ,获得积分10
1分钟前
山野的雾完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650780
求助须知:如何正确求助?哪些是违规求助? 4781689
关于积分的说明 15052597
捐赠科研通 4809594
什么是DOI,文献DOI怎么找? 2572392
邀请新用户注册赠送积分活动 1528494
关于科研通互助平台的介绍 1487373