Machine Learning–Based Bridge Maintenance Optimization Model for Maximizing Performance within Available Annual Budgets

桥(图论) 工程类 计算机科学 结构工程 可靠性工程 土木工程 生物 解剖
作者
Mahdi Ghafoori,Moatassem Abdallah,Mehmet E. Ozbek
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:29 (4) 被引量:3
标识
DOI:10.1061/jbenf2.beeng-6436
摘要

Effective maintenance planning for bridges is crucial for maintaining their performance, safety, and minimizing maintenance costs. Timely implementation of interventions can improve the performance of bridges and avoid the need for costly interventions. However, bridge maintenance is often delayed because of inadequate planning and budget allocation, as well as resource constraints such as funding. With the availability of historical condition data of bridges in databases such as the National Bridge Inventory (NBI) and National Bridge Elements (NBE), there is an opportunity to use data-driven methods to predict deterioration of bridge elements and optimize their maintenance interventions to maximize the performance of bridges. This paper presents the development of a novel system that uses machine learning (ML) techniques, to predict the condition of concrete bridge elements, and binary linear programming optimization method, to identify the optimal selection of maintenance interventions and their timing, to maximize the performance of bridges while complying with available annual budgets. Four ML methods are explored: decision tree, random forest, gradient boosting, and support vector machines. The results of the ML evaluation show that, while the values of the predictive performance metrics varied for different elements, random forest method had the best performance for all elements. A case study of a concrete bridge is analyzed to evaluate the performance of the system and demonstrate its new capabilities. The case study results show that the developed model identifies optimal maintenance interventions for various annual budgets over a 50-year study period. The primary contributions of this research to the body of knowledge are as follows: (1) the development of a novel system that integrates machine learning techniques and linear programming for predicting bridge element conditions and optimizing maintenance interventions; (2) modeling and predicting the deterioration of bridge elements based on health index metric; and (3) generating long-term maintenance plans for each of the bridge elements to maximize the performance of bridges within available annual budgets. The present system is expected to support decision makers, such as highway agencies, in allocating the limited financial resources for bridge maintenance more efficiently and cost-effectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
包容的琦发布了新的文献求助10
1秒前
1秒前
璨璨发布了新的文献求助10
1秒前
LiYuan发布了新的文献求助10
2秒前
zjspidany应助司徒无剑采纳,获得20
2秒前
2秒前
明朝待明发布了新的文献求助10
2秒前
TT完成签到,获得积分10
3秒前
西里应助龙卡烧烤店采纳,获得100
3秒前
王子云发布了新的文献求助10
4秒前
可爱的函函应助euphoria采纳,获得10
5秒前
5秒前
6秒前
7秒前
7秒前
Xc发布了新的文献求助10
8秒前
一夜暴富完成签到,获得积分10
8秒前
LiYuan完成签到,获得积分10
8秒前
8秒前
yfy关闭了yfy文献求助
8秒前
高高若魔发布了新的文献求助10
8秒前
9秒前
毛头侠发布了新的文献求助10
9秒前
派大星不科研完成签到,获得积分10
10秒前
10秒前
10秒前
小鹅完成签到,获得积分10
10秒前
NNN发布了新的文献求助10
11秒前
香蕉惜霜发布了新的文献求助10
12秒前
12秒前
爱笑的冷风完成签到 ,获得积分10
12秒前
12秒前
Owen应助牛1采纳,获得10
12秒前
13秒前
KK发布了新的文献求助10
13秒前
甄幻梦发布了新的文献求助10
13秒前
krkr发布了新的文献求助10
13秒前
14秒前
完美世界应助㊣㊣采纳,获得10
14秒前
科研通AI2S应助璨璨采纳,获得10
15秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259477
求助须知:如何正确求助?哪些是违规求助? 2901093
关于积分的说明 8313913
捐赠科研通 2570455
什么是DOI,文献DOI怎么找? 1396534
科研通“疑难数据库(出版商)”最低求助积分说明 653523
邀请新用户注册赠送积分活动 631566