Machine Learning–Based Bridge Maintenance Optimization Model for Maximizing Performance within Available Annual Budgets

桥(图论) 工程类 计算机科学 结构工程 可靠性工程 土木工程 生物 解剖
作者
Mahdi Ghafoori,Moatassem Abdallah,Mehmet E. Ozbek
出处
期刊:Journal of Bridge Engineering [American Society of Civil Engineers]
卷期号:29 (4) 被引量:3
标识
DOI:10.1061/jbenf2.beeng-6436
摘要

Effective maintenance planning for bridges is crucial for maintaining their performance, safety, and minimizing maintenance costs. Timely implementation of interventions can improve the performance of bridges and avoid the need for costly interventions. However, bridge maintenance is often delayed because of inadequate planning and budget allocation, as well as resource constraints such as funding. With the availability of historical condition data of bridges in databases such as the National Bridge Inventory (NBI) and National Bridge Elements (NBE), there is an opportunity to use data-driven methods to predict deterioration of bridge elements and optimize their maintenance interventions to maximize the performance of bridges. This paper presents the development of a novel system that uses machine learning (ML) techniques, to predict the condition of concrete bridge elements, and binary linear programming optimization method, to identify the optimal selection of maintenance interventions and their timing, to maximize the performance of bridges while complying with available annual budgets. Four ML methods are explored: decision tree, random forest, gradient boosting, and support vector machines. The results of the ML evaluation show that, while the values of the predictive performance metrics varied for different elements, random forest method had the best performance for all elements. A case study of a concrete bridge is analyzed to evaluate the performance of the system and demonstrate its new capabilities. The case study results show that the developed model identifies optimal maintenance interventions for various annual budgets over a 50-year study period. The primary contributions of this research to the body of knowledge are as follows: (1) the development of a novel system that integrates machine learning techniques and linear programming for predicting bridge element conditions and optimizing maintenance interventions; (2) modeling and predicting the deterioration of bridge elements based on health index metric; and (3) generating long-term maintenance plans for each of the bridge elements to maximize the performance of bridges within available annual budgets. The present system is expected to support decision makers, such as highway agencies, in allocating the limited financial resources for bridge maintenance more efficiently and cost-effectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lihang发布了新的文献求助10
3秒前
潇潇麻麻完成签到,获得积分10
3秒前
相对完成签到,获得积分10
4秒前
5秒前
JamesPei应助棋士采纳,获得10
5秒前
星辰大海应助chr采纳,获得10
6秒前
7秒前
丘比特应助高挑的梦芝采纳,获得10
7秒前
起飞上天完成签到,获得积分10
8秒前
李爱国应助Lost采纳,获得10
10秒前
lihang完成签到,获得积分10
12秒前
Re完成签到,获得积分10
13秒前
xxxx发布了新的文献求助10
14秒前
14秒前
14秒前
郭睿发布了新的文献求助10
16秒前
16秒前
刻苦冬菱完成签到,获得积分10
16秒前
17秒前
QING发布了新的文献求助10
18秒前
烂漫炎彬发布了新的文献求助10
18秒前
yzhwzh给yzhwzh的求助进行了留言
18秒前
相对发布了新的文献求助50
21秒前
Ma完成签到,获得积分10
22秒前
25秒前
quhayley应助Flanker采纳,获得20
26秒前
危机的安容完成签到,获得积分10
27秒前
小吕发布了新的文献求助10
28秒前
drift发布了新的文献求助10
28秒前
29秒前
棋士发布了新的文献求助10
29秒前
科研通AI2S应助田轲采纳,获得10
30秒前
th完成签到,获得积分10
30秒前
xxxx完成签到,获得积分10
31秒前
31秒前
起飞上天发布了新的文献求助10
33秒前
34秒前
36秒前
Flanker完成签到,获得积分10
39秒前
伶俐问薇完成签到,获得积分10
39秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951053
求助须知:如何正确求助?哪些是违规求助? 3496470
关于积分的说明 11082221
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784016
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801030