Deciphering the Kinetics of Spontaneous Generation of H2O2 in Individual Water Microdroplets

化学 产量(工程) 动力学 荧光 蒸发 纳米技术 化学物理 热力学 光学 量子力学 物理 材料科学
作者
Kai Zhou,Hua Su,Jia Gao,Haoran Li,Shasha Liu,Xuannuo Yi,Zhibing Zhang,Wei Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (4): 2445-2451 被引量:31
标识
DOI:10.1021/jacs.3c09864
摘要

Spontaneous generation of H2O2 in sub-10 μm-sized water microdroplets has received increasing interest since its first discovery in 2019. On the other hand, due to the short lifetime of these microdroplets (rapid evaporation) and lack of suitable tools to real-time monitor the generation of H2O2 in individual microdroplets, such a seemingly thermodynamically unfavorable process has also raised vigorous debates on the origin of H2O2 and the underlying mechanism. Herein, we prepared water microdroplets with a long lifetime (>1 h) by virtue of microwell confinement and dynamically monitored the spontaneous generation of H2O2 in individual microdroplets via time-lapsed fluorescence imaging. It was unveiled that H2O2 was continuously generated in the as-prepared water microdroplets and an apparent equilibrium concentration of ∼3 μM of H2O2 in the presence of a H2O2-consuming reaction can be obtained. Through engineering the geometry of these microdroplets, we further revealed that the generation rates of H2O2 in individual microdroplets were positively proportional to their surface-to-volume ratios. This also allowed us to extract a maximal H2O2 generation rate of 7.7 nmol m-2 min-1 in the presence of a H2O2-consuming reaction and derive the corresponding probability of spontaneous conversion of interfacial H2O into H2O2 for the first time, that is, ∼1 of 65,000 water molecules in 1 s. These findings delivered strong evidence that the spontaneous generation of H2O2 indeed occurs at the surface of microdroplets and provided us with an important starting point to further enhance the yield of H2O2 in water microdroplets for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yang完成签到,获得积分10
刚刚
聪慧石头完成签到,获得积分10
刚刚
时光里完成签到,获得积分10
刚刚
MOON发布了新的文献求助10
刚刚
冷艳的匪发布了新的文献求助10
1秒前
光0921留下了新的社区评论
1秒前
123给123的求助进行了留言
1秒前
Jie_Zhang完成签到,获得积分10
1秒前
2秒前
ESCCCC发布了新的文献求助10
3秒前
谦让谷菱完成签到,获得积分10
3秒前
乐乐应助无私的聪展采纳,获得30
4秒前
Orange应助优雅翎采纳,获得10
4秒前
4秒前
莫远阳完成签到,获得积分10
5秒前
5秒前
demon发布了新的文献求助10
5秒前
舒心小凡完成签到,获得积分10
5秒前
5秒前
5秒前
lin3gold完成签到 ,获得积分10
5秒前
雄图完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
Twonej应助双丁宝贝采纳,获得30
6秒前
领导范儿应助QQQ采纳,获得10
6秒前
7秒前
7秒前
Barry发布了新的文献求助10
7秒前
7秒前
爱听歌的向卉完成签到,获得积分10
8秒前
ding应助鱿鱼采纳,获得10
8秒前
8秒前
漂亮绮彤发布了新的文献求助10
8秒前
guozizi应助土豆你个西红柿采纳,获得100
9秒前
隐形曼青应助石本松采纳,获得10
11秒前
小二郎应助望远山采纳,获得10
11秒前
11秒前
12秒前
echo发布了新的文献求助10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751092
求助须知:如何正确求助?哪些是违规求助? 5466905
关于积分的说明 15368802
捐赠科研通 4890277
什么是DOI,文献DOI怎么找? 2629616
邀请新用户注册赠送积分活动 1577855
关于科研通互助平台的介绍 1534083