Deciphering the Kinetics of Spontaneous Generation of H2O2 in Individual Water Microdroplets

化学 产量(工程) 动力学 荧光 蒸发 纳米技术 化学物理 热力学 光学 量子力学 物理 材料科学
作者
Kai Zhou,Hua Su,Jia Gao,Haoran Li,Shasha Liu,Xuannuo Yi,Zhibing Zhang,Wei Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:146 (4): 2445-2451 被引量:31
标识
DOI:10.1021/jacs.3c09864
摘要

Spontaneous generation of H2O2 in sub-10 μm-sized water microdroplets has received increasing interest since its first discovery in 2019. On the other hand, due to the short lifetime of these microdroplets (rapid evaporation) and lack of suitable tools to real-time monitor the generation of H2O2 in individual microdroplets, such a seemingly thermodynamically unfavorable process has also raised vigorous debates on the origin of H2O2 and the underlying mechanism. Herein, we prepared water microdroplets with a long lifetime (>1 h) by virtue of microwell confinement and dynamically monitored the spontaneous generation of H2O2 in individual microdroplets via time-lapsed fluorescence imaging. It was unveiled that H2O2 was continuously generated in the as-prepared water microdroplets and an apparent equilibrium concentration of ∼3 μM of H2O2 in the presence of a H2O2-consuming reaction can be obtained. Through engineering the geometry of these microdroplets, we further revealed that the generation rates of H2O2 in individual microdroplets were positively proportional to their surface-to-volume ratios. This also allowed us to extract a maximal H2O2 generation rate of 7.7 nmol m-2 min-1 in the presence of a H2O2-consuming reaction and derive the corresponding probability of spontaneous conversion of interfacial H2O into H2O2 for the first time, that is, ∼1 of 65,000 water molecules in 1 s. These findings delivered strong evidence that the spontaneous generation of H2O2 indeed occurs at the surface of microdroplets and provided us with an important starting point to further enhance the yield of H2O2 in water microdroplets for future applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
KKKKK完成签到,获得积分10
刚刚
1秒前
充电宝应助无异常采纳,获得10
1秒前
一步一花青完成签到,获得积分10
2秒前
执着的莆发布了新的文献求助10
2秒前
3秒前
能干储发布了新的文献求助10
3秒前
3秒前
4秒前
共享精神应助贝利亚采纳,获得10
4秒前
喜悦飞鸟完成签到,获得积分10
4秒前
可爱的函函应助合欢采纳,获得10
4秒前
scugy发布了新的文献求助10
5秒前
可爱的函函应助vickymr采纳,获得10
5秒前
6秒前
laurel发布了新的文献求助10
7秒前
星辰大海应助英俊的白安采纳,获得10
7秒前
7秒前
8秒前
9秒前
11秒前
Gzdaigzn完成签到,获得积分10
11秒前
11秒前
陶醉清发布了新的文献求助10
12秒前
12秒前
南南东发布了新的文献求助10
12秒前
12秒前
芒果完成签到 ,获得积分10
13秒前
13秒前
Chan完成签到,获得积分10
14秒前
贝利亚发布了新的文献求助10
14秒前
浮浮世世发布了新的文献求助10
15秒前
16秒前
喜悦飞鸟发布了新的文献求助10
17秒前
李爱国应助布丁采纳,获得10
17秒前
18秒前
无异常发布了新的文献求助10
18秒前
合欢发布了新的文献求助10
19秒前
20秒前
小刘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909