Fault diagnosis of wind turbine gearbox under limited labeled data through temporal predictive and similarity contrast learning embedded with self-attention mechanism

计算机科学 断层(地质) 一般化 相似性(几何) 人工智能 对比度(视觉) 涡轮机 鉴定(生物学) 模式识别(心理学) 预测性维护 故障检测与隔离 机制(生物学) 状态监测 机器学习 数据挖掘 工程类 可靠性工程 数学 哲学 数学分析 生物 地震学 执行机构 机械工程 地质学 电气工程 图像(数学) 植物 认识论
作者
Yunyi Zhu,Bin Xie,Anqi Wang,Zheng Qian
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123080-123080 被引量:15
标识
DOI:10.1016/j.eswa.2023.123080
摘要

Data-driven models for wind turbine (WT) gearbox health monitoring have garnered significant attention. However, these models usually depend on extensive manually labeled data, which is costly and time-consuming to obtain at industrial sites. The model performance is also heavily affected by volatile operating conditions of WT gearbox. To overcome these issues, this paper proposes a self-supervised fault diagnosis method based on temporal predictive and similarity contrast learning (TPSCL) embedded with self-attention mechanism. This method aims to extract latent fault features from unlabeled vibration signals, thereby improving diagnostic performance under limited labeled data and volatile working conditions. Firstly, a data augmentation combination strategy is proposed to improve the variety of input data and enhance the generalization. Furthermore, a temporal predictive and similarity contrastive learning model embedded with self-attention mechanism is proposed to extract representations related to WT gearbox health conditions. In this case, the intrinsic characteristics of unlabeled vibration signals are learned, and the operating environment disturbance can be eliminated. Finally, the fault separability is realized by fine-tuning the model with few labeled data, which can finally achieve accurate fault identification of WT gearbox. Compared with existing methods, the proposed method can fully utilize existing monitoring data and achieve better performance in WT gearbox status monitoring and diagnosis under limited labeled data and variable operating conditions, contributing to WT predictive maintenance and efficiency improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuesensu完成签到 ,获得积分10
1秒前
豌豆完成签到,获得积分10
2秒前
M先生完成签到,获得积分10
2秒前
3秒前
5秒前
科研通AI5应助sun采纳,获得10
5秒前
shitzu完成签到 ,获得积分10
6秒前
choco发布了新的文献求助10
8秒前
9秒前
李健的小迷弟应助sun采纳,获得10
9秒前
Jzhang应助liyuchen采纳,获得10
9秒前
魏伯安发布了新的文献求助30
9秒前
jjjjjj发布了新的文献求助30
11秒前
12秒前
伯赏诗霜发布了新的文献求助10
12秒前
糟糕的鹏飞完成签到 ,获得积分10
13秒前
13秒前
欢呼凡旋完成签到,获得积分10
14秒前
韩邹光完成签到,获得积分10
16秒前
xg发布了新的文献求助10
16秒前
17秒前
dktrrrr完成签到,获得积分10
17秒前
季生完成签到,获得积分10
20秒前
徐徐完成签到,获得积分10
20秒前
21秒前
21秒前
haku完成签到,获得积分10
23秒前
可爱的函函应助laodie采纳,获得10
25秒前
Singularity应助忆楠采纳,获得10
26秒前
27秒前
请叫我风吹麦浪应助PengHu采纳,获得30
28秒前
jjjjjj完成签到,获得积分10
28秒前
凝子老师发布了新的文献求助10
30秒前
30秒前
橙子fy16_发布了新的文献求助10
32秒前
cookie完成签到,获得积分10
32秒前
柒柒的小熊完成签到,获得积分10
33秒前
33秒前
Hello应助萌之痴痴采纳,获得10
34秒前
hahaer完成签到,获得积分10
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849