Engineering Near-Infrared Fluorescent Probes Based on Modulation of Molecular Excited States

激发态 荧光 红外线的 调制(音乐) 材料科学 光电子学 化学 光学 原子物理学 声学 物理
作者
Chenxu Yan,Zhirong Zhu,Yongkang Yao,Qi Wang,Zhiqian Guo,Weihong Zhu
出处
期刊:Accounts of materials research [American Chemical Society]
卷期号:5 (1): 64-75 被引量:8
标识
DOI:10.1021/accountsmr.3c00196
摘要

ConspectusFluorescent dyes have revolutionized the way we study life science and conduct medical diagnostics. Compared with visible wavelengths, near-infrared (NIR) fluorescence has gained significant attention due to its unique properties, such as deep tissue penetration, reduced autofluorescence, and improved signal-to-noise ratios, making it highly desirable for a wide range of in vivo applications including noninvasive sensing, cancer research, and drug delivery.In fluorescence sensing, the absorption of light by a fluorophore and its subsequent transition to an excited state are critical steps. Once in the excited state, the molecule may undergo various relaxation processes including internal conversion, vibrational relaxation, and radiative/nonradiative decay. These processes directly impact the fluorophore's emission wavelength, brightness, photostability, and other properties. Therefore, rational modulation of molecular excited states is vital for achieving effective fluorescence sensing. However, NIR fluorophores with a small S0–S1 energy gap, as governed by the energy gap law, exhibit much faster nonradiative deactivation pathway compared to dyes in the visible region. This fast relaxation process makes them more susceptible to interference from molecular aggregation behavior, environmental factors, and so on. Thus, there is often a trade-off effect between achieving a tunable red-shift wavelength and a desirable performance in light-up imaging and quantitative sensing. Overcoming these challenges requires careful engineering of molecular structures and modulation of excited states to achieve the desired balance between extending emission wavelength and performance in NIR bioimaging.In this Account, we present our recent progress in manipulating molecular excited states for the rational design of NIR fluorescent probes. Specifically, we focus on engineering novel molecular building blocks, exploring photophysical mechanisms, and regulating assembly behavior (to inhibit or amplify excited state intramolecular motion in aggregates), aiming to resolve long-standing issues in lighting-up mapping, quantitative sensing, and so on. First, we introduce the monochromophore-based "reliable ratiometric" strategy with additional emission, enabling NIR fluorescence quantification of hypoxia and biomolecules. Second, we demonstrate how to reverse the excited state rotation driving energy, achieving completely overturning the intramolecular charge transfer (ICT) fluorophores' quenching mode into the light-up mode. Third, we discuss the relationship between the NIR chromophore aggregation behavior and excited state relaxation. Through inhibiting or amplifying excited state intramolecular motion, it could well improve imaging fidelity and theranostic outcomes. Finally, we explore future perspectives and challenges of modulation of molecular excited states in dynamic NIR fluorescent bioimaging. It is hoped that this Account provides a deepening of research on molecular excited states and guidance for the development of novel high-performance NIR probes for physiological/pharmacological studies and clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楚岸发布了新的文献求助10
1秒前
阿强哥20241101完成签到,获得积分10
1秒前
TQY完成签到,获得积分10
2秒前
Khr1stINK发布了新的文献求助10
2秒前
宁静致远完成签到,获得积分10
2秒前
mxbyccbaby完成签到,获得积分10
3秒前
3秒前
楼寒天发布了新的文献求助30
3秒前
3秒前
jdmeme完成签到 ,获得积分10
4秒前
DVD完成签到 ,获得积分10
5秒前
学术嫪毐完成签到,获得积分10
5秒前
Xyyy发布了新的文献求助10
6秒前
uu完成签到,获得积分10
6秒前
小蘑菇应助赵赵赵采纳,获得10
6秒前
阿兹卡班狂徒完成签到 ,获得积分10
6秒前
6秒前
yuefeng发布了新的文献求助10
7秒前
澳臻白发布了新的文献求助10
7秒前
8秒前
刘大妮发布了新的文献求助10
8秒前
8秒前
王欧尼发布了新的文献求助10
9秒前
sooya关注了科研通微信公众号
9秒前
10秒前
10秒前
青木蓝发布了新的文献求助10
12秒前
852应助gaga采纳,获得10
12秒前
13秒前
13秒前
游尘发布了新的文献求助10
14秒前
bkagyin应助zhaowenxian采纳,获得10
14秒前
水电费第三方完成签到,获得积分20
15秒前
斯文败类应助lalala采纳,获得10
15秒前
小王爱看文献完成签到,获得积分10
16秒前
李明完成签到,获得积分10
16秒前
酷波er应助Khr1stINK采纳,获得10
17秒前
cora发布了新的文献求助10
17秒前
shelly0621发布了新的文献求助10
17秒前
中华有为发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794