Rapid Identification of Medicinal Polygonatum Species and Predictive of Polysaccharides Using ATR‐FTIR Spectroscopy Combined With Multivariate Analysis

衰减全反射 偏最小二乘回归 化学 化学计量学 傅里叶变换红外光谱 药用植物 色谱法 红外光谱学 植物 数学 生物 有机化学 物理 量子力学 统计
作者
Yue Wang,Zhimin Li,Wanyi Li,Yuanzhong Wang
出处
期刊:Phytochemical Analysis [Wiley]
标识
DOI:10.1002/pca.3459
摘要

ABSTRACT Introduction Medicinal Polygonatum species is a widely used traditional Chinese medicine with high nutritional value, known for its anti‐fatigue properties, enhancement of immunity, delays aging, improves sleep, and other health benefits. However, the efficacy of different species varies, making the quality control of medicinal Polygonatum species increasingly important. Polysaccharides are important in medicinal Polygonatum species because of their potential functional properties, such as antioxidation, hypoglycemia, protection of intestinal health, and minimal toxicological effects on human health, as well as high polysaccharide levels. Objective This study developed a qualitative medicinal Polygonatum species model and a polysaccharides predictive model based on attenuated total reflection Fourier transform infrared spectroscopy (ATR‐FTIR) combined with a multivariate analysis approach. Materials and Methods ATR‐FTIR spectral information of 334 medicinal Polygonatum species samples was collected and the spectral information of different modes was analyzed. The ATR‐FTIR spectral differences of three medicinal Polygonatum species were studied by multivariate analysis combined with four spectral preprocessing and three variable selection methods. For the prediction of polysaccharides in Polygonatum kingianum Collett & Hemsl. (PK), we initially determined the actual content of 110 PK polysaccharide samples using the anthrone‐sulfuric acid method, then established partial least squares regression (PLSR) and kernel PLSR models in conjunction with attenuated total reflectance Fourier transform infrared (ATR‐FTIR) spectroscopy. Results In the visualization analysis, the orthogonal partial least squares‐discriminant analysis (OPLS‐DA) model based on second‐order derivative (SD) preprocessing was most suitable for medicinal Polygonatum species species binary classification, spectral differences between Polygonatum cyrtonema Hua (PC) and other species are evident; in the hard modeling, SD preprocessing improves the accuracy of non‐deep learning models for the classification of three medicinal Polygonatum species. In contrast, residual neural network (ResNet) models were the best choice for species identification without preprocessing and variable selection. In addition, the partial least squares regression (PLSR) model and Kernel‐PLSR model can quickly predict PK polysaccharides content, among them, the Kernel‐PLSR model with SD pretreatment has the best prediction performance, residual prediction deviation (RPD) = 7.2870, Rp = 0.9905. Conclusion In this study, we employed ATR‐FTIR spectroscopy and various treatments to discern different medicinal Polygonatum species. We also evaluated the effects of preprocessing methods and variable selection on the prediction of PK polysaccharides by PLSR and Kernel‐PLSR models. Among them, the ResNet model can achieve 100% correct classification of medicinal Polygonatum species without complex spectral preprocessing. Furthermore, the Kernel‐PLSR model based on SD‐ATR‐FTIR spectra had the best performance in polysaccharides prediction. In summary, by integrating ATR‐FTIR spectroscopy with multivariate analysis, this research accomplished the classification of medicinal Polygonatum species and the prediction of polysaccharides. The methodology offers the benefits of speed, environmental sustainability, and precision, highlighting its significant potential for practical applications. In future research, on the one hand, it can be further investigated using a portable infrared spectrometer, and on the other hand, infrared spectroscopy can also be applied to the prediction of other chemical components of medicinal Polygonatum species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Yara.H采纳,获得10
刚刚
顾矜应助zxvcbnm采纳,获得10
刚刚
怒发5篇sci发布了新的文献求助10
1秒前
1秒前
闪闪发布了新的文献求助10
1秒前
霸气擎宇完成签到,获得积分10
2秒前
Lucas应助怡然雁凡采纳,获得10
2秒前
xx发布了新的文献求助10
2秒前
3秒前
风中的天空完成签到,获得积分10
4秒前
yyymmma发布了新的文献求助10
4秒前
思源应助酒九采纳,获得10
5秒前
xjcy应助拼搏尔风采纳,获得10
6秒前
科目三应助JoaquinH采纳,获得10
6秒前
852应助zjunzero采纳,获得10
6秒前
天天快乐应助小狗同志006采纳,获得10
7秒前
飞翔的霸天哥应助jk445采纳,获得30
7秒前
TRz发布了新的文献求助10
7秒前
8秒前
wxt完成签到 ,获得积分10
9秒前
Dali完成签到,获得积分10
10秒前
现代的若翠完成签到,获得积分10
10秒前
吴学仕完成签到,获得积分10
11秒前
天Q发布了新的文献求助20
11秒前
12秒前
ty心明亮完成签到 ,获得积分10
13秒前
13秒前
14秒前
怒发5篇sci完成签到,获得积分10
14秒前
uvk完成签到,获得积分10
15秒前
漂流瓶完成签到 ,获得积分10
15秒前
求求各位大哥救救小弟我吧完成签到,获得积分10
15秒前
重要寒凡完成签到,获得积分10
16秒前
xx完成签到,获得积分20
16秒前
uvk发布了新的文献求助10
17秒前
爸爸完成签到,获得积分10
17秒前
文艺的曼柔完成签到 ,获得积分10
17秒前
端庄书雁完成签到,获得积分10
18秒前
小二郎应助QE采纳,获得10
18秒前
高高的元容给高高的元容的求助进行了留言
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135235
求助须知:如何正确求助?哪些是违规求助? 2786181
关于积分的说明 7776022
捐赠科研通 2442078
什么是DOI,文献DOI怎么找? 1298417
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600847