Publicly Available Dental Image Datasets for Artificial Intelligence

计算机科学 元数据 人口统计学的 人工智能 分割 情报检索 梅德林 医学 万维网 人口学 社会学 政治学 法学
作者
Sergio Uribe,Julien Issa,Fatemeh Sohrabniya,Alosh Denny,Noel N. Kim,Adeyinka F. Dayo,Akhilanand Chaurasia,Ahmad Sofi‐Mahmudi,M. Büttner,Falk Schwendicke
出处
期刊:Journal of Dental Research [SAGE]
标识
DOI:10.1177/00220345241272052
摘要

The development of artificial intelligence (AI) in dentistry requires large and well-annotated datasets. However, the availability of public dental imaging datasets remains unclear. This study aimed to provide a comprehensive overview of all publicly available dental imaging datasets to address this gap and support AI development. This observational study searched all publicly available dataset resources (academic databases, preprints, and AI challenges), focusing on datasets/articles from 2020 to 2023, with PubMed searches extending back to 2011. We comprehensively searched for dental AI datasets containing images (intraoral photos, scans, radiographs, etc.) using relevant keywords. We included datasets of >50 images obtained from publicly available sources. We extracted dataset characteristics, patient demographics, country of origin, dataset size, ethical clearance, image details, FAIRness metrics, and metadata completeness. We screened 131,028 records and extracted 16 unique dental imaging datasets. The datasets were obtained from Kaggle (18.8%), GitHub, Google, Mendeley, PubMed, Zenodo (each 12.5%), Grand-Challenge, OSF, and arXiv (each 6.25%). The primary focus was tooth segmentation (62.5%) and labeling (56.2%). Panoramic radiography was the most common imaging modality (58.8%). Of the 13 countries, China contributed the most images (2,413). Of the datasets, 75% contained annotations, whereas the methods used to establish labels were often unclear and inconsistent. Only 31.2% of the datasets reported ethical approval, and 56.25% did not specify a license. Most data were obtained from dental clinics (50%). Intraoral radiographs had the highest findability score in the FAIR assessment, whereas cone-beam computed tomography datasets scored the lowest in all categories. These findings revealed a scarcity of publicly available imaging dental data and inconsistent metadata reporting. To promote the development of robust, equitable, and generalizable AI tools for dental diagnostics, treatment, and research, efforts are needed to address data scarcity, increase diversity, mandate metadata completeness, and ensure FAIRness in AI dental imaging research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清爽的雨竹完成签到,获得积分10
1秒前
研友_ngk2rn完成签到,获得积分10
2秒前
半透明完成签到,获得积分20
2秒前
图图烤肉发布了新的文献求助10
3秒前
4秒前
4秒前
科研一定要通完成签到,获得积分10
4秒前
奶昔源发布了新的文献求助10
5秒前
洛小枫完成签到,获得积分10
6秒前
6秒前
7秒前
打打应助ohh采纳,获得10
8秒前
Lokiki驳回了xixi应助
8秒前
信徒完成签到,获得积分10
8秒前
8秒前
9秒前
西西发布了新的文献求助10
10秒前
星辰大海应助任性雨柏采纳,获得10
10秒前
yannnis发布了新的文献求助10
10秒前
婉约清扬完成签到 ,获得积分10
10秒前
加菲丰丰举报无问西东求助涉嫌违规
11秒前
11秒前
英俊雅琴发布了新的文献求助10
11秒前
郑泽森发布了新的文献求助10
12秒前
桐桐应助noflatterer采纳,获得10
13秒前
14秒前
Akim应助虚幻的小海豚采纳,获得10
14秒前
图图烤肉完成签到,获得积分10
16秒前
16秒前
17秒前
小马甲应助fiee采纳,获得10
18秒前
风的忧伤完成签到,获得积分10
18秒前
daisy完成签到,获得积分10
19秒前
19秒前
淡然元珊发布了新的文献求助10
19秒前
19秒前
nini应助研友_LXd7JL采纳,获得10
19秒前
20秒前
彭于晏应助奶昔源采纳,获得10
20秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
A Dissection Guide & Atlas to the Rabbit 600
中国心血管健康与疾病报告2023(要完整的报告) 500
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3102382
求助须知:如何正确求助?哪些是违规求助? 2753656
关于积分的说明 7624478
捐赠科研通 2406188
什么是DOI,文献DOI怎么找? 1276717
科研通“疑难数据库(出版商)”最低求助积分说明 616918
版权声明 599103