Personalized prediction of intradialytic hypotension in clinical practice: Development and evaluation of a novel AI dashboard incorporating risk factors from previous and current dialysis sessions

仪表板 医学 临床实习 透析 计算机科学 重症监护医学 数据科学 物理疗法 内科学
作者
I‐Ning Yang,Chung‐Feng Liu,Chih-Chiang Chien,Hsien-Yi Wang,Jhi-Joung Wang,Yu‐Ting Shen,Chia‐Chun Chen
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:190: 105538-105538
标识
DOI:10.1016/j.ijmedinf.2024.105538
摘要

Intradialytic hypotension (IDH) is one of the most common and critical complications of hemodialysis. Despite many proven factors associated with IDH, accurately predicting it before it occurs for individual patients during dialysis sessions remains a challenge. To establish artificial intelligence (AI) predictive models for IDH, which consider risk factors from previous and ongoing dialysis to optimize model performance. We then implement a novel digital dashboard with the best model for continuous monitoring of patients' status undergoing hemodialysis. The AI dashboard can display the real-time probability of IDH for each patient in the hemodialysis center providing an objective reference for care members for monitoring IDH and treating it in advance. Eight machine learning (ML) algorithms, including Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), Light Gradient Boosting Machine (LightGBM), Multilayer Perception (MLP), eXtreme Gradient Boosting (XGBoost), and NaiveBayes, were used to establish the predictive model of IDH to determine if the patient will acquire IDH within 60 min. In addition to real-time features, we incorporated several features sourced from previous dialysis sessions to improve the model's performance. The electronic medical records of patients who had undergone hemodialysis at Chi Mei Medical Center between September 1, 2020 and December 31, 2020 were included in this research. Impact evaluation of AI assistance was conducted by IDH rate. The results showed that the XGBoost model had the best performance (accuracy: 0.858, sensitivity: 0.858, specificity: 0.858, area under the curve: 0.936) and was chosen for AI dashboard implementation. The care members were delighted with the dashboard providing real-time scientific probabilities for IDH risk and historic predictive records in a graphic style. Other valuable functions were appended in the dashboard as well. Impact evaluation indicated a significant decrease in IDH rate after the application of AI assistance. This AI dashboard provides high-quality results in IDH risk prediction during hemodialysis. High-risk patients for IDH will be recognized 60 min earlier, promoting individualized preventive interventions as part of the treatment plan. Our approach is believed to promise an excellent way for IDH management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桔梗发布了新的文献求助10
1秒前
啊就是地方就啊都是完成签到,获得积分10
1秒前
酷酷薯片完成签到,获得积分10
2秒前
2秒前
CCCr完成签到,获得积分10
2秒前
SciGPT应助小支绝不停笔采纳,获得10
3秒前
可爱的函函应助奇奇吃面采纳,获得10
4秒前
可口可乐完成签到,获得积分10
8秒前
10秒前
我是老大应助echo采纳,获得10
12秒前
12秒前
12秒前
科研劝退发布了新的文献求助30
13秒前
CodeCraft应助露露采纳,获得10
15秒前
Elary完成签到,获得积分20
16秒前
gjcAurora完成签到,获得积分10
17秒前
18秒前
风中晓露完成签到,获得积分10
18秒前
19秒前
领导范儿应助魔幻高烽采纳,获得10
19秒前
echo完成签到,获得积分20
19秒前
20秒前
贪玩的野狼完成签到 ,获得积分10
21秒前
22秒前
22秒前
英俊的铭应助落寞怀柔采纳,获得10
23秒前
薰硝壤应助科研劝退采纳,获得30
24秒前
是猪猪呀发布了新的文献求助10
25秒前
jj完成签到,获得积分10
25秒前
xiaoz完成签到,获得积分10
26秒前
echo发布了新的文献求助10
26秒前
李奶奶完成签到,获得积分10
26秒前
七米日光完成签到,获得积分10
26秒前
26秒前
露露发布了新的文献求助10
27秒前
27秒前
七米日光发布了新的文献求助10
29秒前
魔幻高烽发布了新的文献求助10
30秒前
Sofia完成签到,获得积分10
31秒前
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011