仪表板
医学
临床实习
透析
计算机科学
重症监护医学
数据科学
物理疗法
内科学
作者
I‐Ning Yang,Chung‐Feng Liu,Chih-Chiang Chien,Hsien-Yi Wang,Jhi-Joung Wang,Yu‐Ting Shen,Chia‐Chun Chen
标识
DOI:10.1016/j.ijmedinf.2024.105538
摘要
Intradialytic hypotension (IDH) is one of the most common and critical complications of hemodialysis. Despite many proven factors associated with IDH, accurately predicting it before it occurs for individual patients during dialysis sessions remains a challenge. To establish artificial intelligence (AI) predictive models for IDH, which consider risk factors from previous and ongoing dialysis to optimize model performance. We then implement a novel digital dashboard with the best model for continuous monitoring of patients' status undergoing hemodialysis. The AI dashboard can display the real-time probability of IDH for each patient in the hemodialysis center providing an objective reference for care members for monitoring IDH and treating it in advance. Eight machine learning (ML) algorithms, including Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbor (KNN), Light Gradient Boosting Machine (LightGBM), Multilayer Perception (MLP), eXtreme Gradient Boosting (XGBoost), and NaiveBayes, were used to establish the predictive model of IDH to determine if the patient will acquire IDH within 60 min. In addition to real-time features, we incorporated several features sourced from previous dialysis sessions to improve the model's performance. The electronic medical records of patients who had undergone hemodialysis at Chi Mei Medical Center between September 1, 2020 and December 31, 2020 were included in this research. Impact evaluation of AI assistance was conducted by IDH rate. The results showed that the XGBoost model had the best performance (accuracy: 0.858, sensitivity: 0.858, specificity: 0.858, area under the curve: 0.936) and was chosen for AI dashboard implementation. The care members were delighted with the dashboard providing real-time scientific probabilities for IDH risk and historic predictive records in a graphic style. Other valuable functions were appended in the dashboard as well. Impact evaluation indicated a significant decrease in IDH rate after the application of AI assistance. This AI dashboard provides high-quality results in IDH risk prediction during hemodialysis. High-risk patients for IDH will be recognized 60 min earlier, promoting individualized preventive interventions as part of the treatment plan. Our approach is believed to promise an excellent way for IDH management.
科研通智能强力驱动
Strongly Powered by AbleSci AI