The temporal dynamics of visual attention.

心理学 认知心理学 动力学(音乐) 视觉感受 认知科学 视觉注意 认知 感知 神经科学 教育学
作者
Han Zhang,Jacob Sellers,Taraz G. Lee,John Jonides
出处
期刊:Journal of Experimental Psychology: General 被引量:1
标识
DOI:10.1037/xge0001661
摘要

Researchers have long debated how humans select relevant objects amid physically salient distractions. An increasingly popular view holds that the key to avoiding distractions lies in suppressing the attentional priority of a salient distractor. However, the precise mechanisms of distractor suppression remain elusive. Because the computation of attentional priority is a time-dependent process, distractor suppression must be understood within these temporal dynamics. In four experiments, we tracked the temporal dynamics of visual attention using a novel forced-response method, by which participants were required to express their latent attentional priority at varying processing times via saccades. We show that attention could be biased either toward or away from a salient distractor depending on the timing of observation, with these temporal dynamics varying substantially across experiments. These dynamics were explained by a computational model assuming the distractor and target priority signals arrive asynchronously in time and with different influences on saccadic behavior. The model suggests that distractor signal suppression can be achieved via a "slow" mechanism in which the distractor priority signal dictates saccadic behavior until a late-arriving priority signal overrides it, or a "fast" mechanism which directly suppresses the distractor priority signal's behavioral expression. The two mechanisms are temporally dissociable and can work collaboratively, resulting in time-dependent patterns of attentional allocation. The current work underscores the importance of considering the temporal dynamics of visual attention and provides a computational architecture for understanding the mechanisms of distractor suppression. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助一网小海蜇采纳,获得10
1秒前
专一的笑阳完成签到 ,获得积分10
1秒前
xuesensu完成签到 ,获得积分10
5秒前
豌豆完成签到,获得积分10
6秒前
M先生完成签到,获得积分10
6秒前
7秒前
9秒前
科研通AI5应助sun采纳,获得10
9秒前
shitzu完成签到 ,获得积分10
10秒前
choco发布了新的文献求助10
12秒前
13秒前
李健的小迷弟应助sun采纳,获得10
13秒前
Jzhang应助liyuchen采纳,获得10
13秒前
魏伯安发布了新的文献求助30
13秒前
jjjjjj发布了新的文献求助30
15秒前
16秒前
伯赏诗霜发布了新的文献求助10
16秒前
糟糕的鹏飞完成签到 ,获得积分10
17秒前
17秒前
欢呼凡旋完成签到,获得积分10
18秒前
韩邹光完成签到,获得积分10
20秒前
xg发布了新的文献求助10
20秒前
21秒前
dktrrrr完成签到,获得积分10
21秒前
季生完成签到,获得积分10
24秒前
徐徐完成签到,获得积分10
24秒前
25秒前
25秒前
haku完成签到,获得积分10
27秒前
可爱的函函应助laodie采纳,获得10
29秒前
Singularity应助忆楠采纳,获得10
30秒前
31秒前
请叫我风吹麦浪应助PengHu采纳,获得30
32秒前
jjjjjj完成签到,获得积分10
32秒前
凝子老师发布了新的文献求助10
34秒前
34秒前
橙子fy16_发布了新的文献求助10
36秒前
cookie完成签到,获得积分10
36秒前
柒柒的小熊完成签到,获得积分10
37秒前
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849