亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The temporal dynamics of visual attention.

心理学 认知心理学 动力学(音乐) 视觉感受 认知科学 视觉注意 认知 感知 神经科学 教育学
作者
Han Zhang,Jacob Sellers,Taraz G. Lee,John Jonides
出处
期刊:Journal of Experimental Psychology: General 被引量:8
标识
DOI:10.1037/xge0001661
摘要

Researchers have long debated how humans select relevant objects amid physically salient distractions. An increasingly popular view holds that the key to avoiding distractions lies in suppressing the attentional priority of a salient distractor. However, the precise mechanisms of distractor suppression remain elusive. Because the computation of attentional priority is a time-dependent process, distractor suppression must be understood within these temporal dynamics. In four experiments, we tracked the temporal dynamics of visual attention using a novel forced-response method, by which participants were required to express their latent attentional priority at varying processing times via saccades. We show that attention could be biased either toward or away from a salient distractor depending on the timing of observation, with these temporal dynamics varying substantially across experiments. These dynamics were explained by a computational model assuming the distractor and target priority signals arrive asynchronously in time and with different influences on saccadic behavior. The model suggests that distractor signal suppression can be achieved via a "slow" mechanism in which the distractor priority signal dictates saccadic behavior until a late-arriving priority signal overrides it, or a "fast" mechanism which directly suppresses the distractor priority signal's behavioral expression. The two mechanisms are temporally dissociable and can work collaboratively, resulting in time-dependent patterns of attentional allocation. The current work underscores the importance of considering the temporal dynamics of visual attention and provides a computational architecture for understanding the mechanisms of distractor suppression. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾业辉发布了新的文献求助10
刚刚
8秒前
零知识发布了新的文献求助10
11秒前
粥粥大王完成签到,获得积分10
13秒前
粥粥大王发布了新的文献求助10
17秒前
652183758完成签到 ,获得积分10
22秒前
22秒前
所所应助柚子采纳,获得10
23秒前
酷波er应助啵子采纳,获得10
24秒前
丘比特应助曾业辉采纳,获得10
33秒前
TXZ06完成签到,获得积分10
38秒前
科研通AI6应助科研通管家采纳,获得10
41秒前
Lumi发布了新的文献求助10
41秒前
Lucas应助科研通管家采纳,获得10
41秒前
41秒前
英姑应助科研通管家采纳,获得10
41秒前
量子星尘发布了新的文献求助10
59秒前
1分钟前
苯苯完成签到,获得积分10
1分钟前
CipherSage应助苯苯采纳,获得10
1分钟前
科研通AI6.1应助洪子睿采纳,获得10
1分钟前
脑洞疼应助要减肥的冰姬采纳,获得30
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
啵子发布了新的文献求助10
2分钟前
2分钟前
literature发布了新的文献求助10
2分钟前
MchemG应助零知识采纳,获得10
2分钟前
yolo完成签到 ,获得积分10
2分钟前
iorpi完成签到,获得积分10
2分钟前
酷波er应助科研通管家采纳,获得10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
literature完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5780249
求助须知:如何正确求助?哪些是违规求助? 5653879
关于积分的说明 15452923
捐赠科研通 4910998
什么是DOI,文献DOI怎么找? 2643189
邀请新用户注册赠送积分活动 1590828
关于科研通互助平台的介绍 1545336