RTL-YOLOv8n: A Lightweight Model for Efficient and Accurate Underwater Target Detection

水下 计算机科学 目标检测 领域(数学) 特征提取 人工智能 一般化 透视图(图形) 实时计算 嵌入式系统 模式识别(心理学) 数学分析 数学 纯数学 海洋学 地质学
作者
guoping Feng,Zhixin Xiong,Hongshuai Pang,Yunlei Gao,Zhiqiang Zhang,Jiapeng Yang,Zhihong Ma
出处
期刊:Fishes [Multidisciplinary Digital Publishing Institute]
卷期号:9 (8): 294-294
标识
DOI:10.3390/fishes9080294
摘要

Underwater object detection is essential for the advancement of automated aquaculture operations. Addressing the challenges of low detection accuracy and insufficient generalization capabilities for underwater targets, this paper focuses on the development of a novel detection method tailored to such environments. We introduce the RTL-YOLOv8n model, specifically designed to enhance the precision and efficiency of detecting objects underwater. This model incorporates advanced feature-extraction mechanisms—RetBlock and triplet attention—that significantly improve its ability to discern fine details amidst complex underwater scenes. Additionally, the model employs a lightweight coupled detection head (LCD-Head), which reduces its computational requirements by 31.6% compared to the conventional YOLOv8n, without sacrificing performance. Enhanced by the Focaler–MPDIoU loss function, RTL-YOLOv8n demonstrates superior capability in detecting challenging targets, showing a 1.5% increase in mAP@0.5 and a 5.2% improvement in precision over previous models. These results not only confirm the effectiveness of RTL-YOLOv8n in complex underwater environments but also highlight its potential applicability in other settings requiring efficient and precise object detection. This research provides valuable insights into the development of aquatic life detection and contributes to the field of smart aquatic monitoring systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初a完成签到,获得积分10
刚刚
1秒前
Rheanna完成签到,获得积分10
1秒前
1秒前
optical完成签到,获得积分10
1秒前
1秒前
实验耗材完成签到 ,获得积分10
2秒前
Zhengzhang完成签到 ,获得积分10
2秒前
阿瓦隆的蓝胖子完成签到,获得积分10
2秒前
HQ完成签到,获得积分10
2秒前
zyy发布了新的文献求助10
3秒前
奔跑的青霉素完成签到 ,获得积分10
3秒前
hannahyyt完成签到,获得积分10
3秒前
3秒前
dtcao发布了新的文献求助10
5秒前
zz完成签到,获得积分10
5秒前
Hello应助刘子龙采纳,获得10
5秒前
6秒前
拉长的傲旋应助吃的饭广泛采纳,获得200
6秒前
快乐科研狗完成签到,获得积分10
6秒前
7秒前
gravity完成签到,获得积分10
7秒前
hannahyyt发布了新的文献求助10
7秒前
Chan发布了新的文献求助10
8秒前
元宝团子完成签到,获得积分10
8秒前
活力的难摧完成签到 ,获得积分10
8秒前
9秒前
刘子龙完成签到,获得积分10
10秒前
10秒前
有人应助风帆展采纳,获得10
10秒前
shinhee完成签到,获得积分10
10秒前
daoyi完成签到,获得积分10
11秒前
张三发布了新的文献求助10
12秒前
a成完成签到,获得积分10
13秒前
haoyooo完成签到,获得积分10
13秒前
淡然的奎完成签到,获得积分10
14秒前
xjwang完成签到,获得积分10
14秒前
Jinnel发布了新的文献求助10
14秒前
有人应助wc采纳,获得10
14秒前
典雅的夜安完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478