Intelligent Prediction and Application Research on Soft Rock Tunnel Deformation Based on the ICPO-LSTM Model

变形(气象学) 地质学 岩土工程 计算机科学 工程类 结构工程 人工智能 海洋学
作者
Chunpeng Zhang,Haiming Liu,Yongmei Peng,Wenyun Ding,Jing Cao
出处
期刊:Buildings [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 2244-2244
标识
DOI:10.3390/buildings14072244
摘要

In tunnel construction, the prediction of the surrounding rock deformation is related to the construction safety and stability of the tunnel structure. In order to achieve an accurate prediction of the surrounding rock deformation in soft rock tunnel construction, a Long Short-Term Memory (LSTM) neural network is used to construct a prediction model of the vault settlement and the horizontal convergence of the upper conductor in soft rock tunnels. The crested porcupine optimisation (CPO) algorithm is used to realise the hyper-parameter optimisation of the LSTM model and to construct the framework of the calculation process of the CPO-LSTM model. Taking the soft rock section of the Baoshishan Tunnel as an example, the large deformation of the surrounding rock is measured and analysed in situ, and the monitoring data of arch settlement and superconducting level convergence are obtained, which are substituted into the CPO-LSTM model for calculation, and compared and analysed with traditional machine learning and optimisation algorithms. The results show that the CPO-LSTM model has an R2 of 0.9982, a MAPE of 0.8595% and an RMSE of 0.1922, which are the best among all the models. In order to further improve the optimisation capability of the CPO, some improvements were made to the CPO and an Improved Crested Porcupine Optimiser (ICPO) was proposed. The ICPO-LSTM prediction model was established, and the ZK6 + 834 section was selected as a research object for comparison and analysis with the CPO-LSTM model. The results of the error analysis show that the prediction accuracy of the improved ICPO-LSTM model has been further improved, and the prediction accuracy of the model meets the requirements of guiding construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王月帆发布了新的文献求助10
1秒前
1秒前
老阳发布了新的文献求助10
2秒前
北斗HH完成签到,获得积分10
3秒前
宋宋完成签到 ,获得积分10
4秒前
Owen应助hebhm采纳,获得10
8秒前
9秒前
清安发布了新的文献求助10
9秒前
梵高的向日葵完成签到 ,获得积分10
10秒前
11秒前
科研通AI5应助ll采纳,获得10
15秒前
hjc641发布了新的文献求助10
15秒前
Holland应助科研通管家采纳,获得10
15秒前
在水一方应助科研通管家采纳,获得10
15秒前
小马过河应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
小二郎应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
19秒前
Eric完成签到,获得积分10
20秒前
王月帆完成签到,获得积分10
20秒前
22秒前
23秒前
24秒前
hebhm发布了新的文献求助10
24秒前
25秒前
Owen应助老阳采纳,获得10
26秒前
善学以致用应助王月帆采纳,获得10
27秒前
27秒前
安生完成签到,获得积分10
28秒前
Swindler发布了新的文献求助10
28秒前
科研通AI5应助少林一只蛋采纳,获得10
30秒前
zzz发布了新的文献求助10
30秒前
30秒前
ll发布了新的文献求助10
31秒前
隔壁海绵宝宝完成签到,获得积分10
33秒前
充电宝应助Michelle采纳,获得10
33秒前
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738649
求助须知:如何正确求助?哪些是违规求助? 3282012
关于积分的说明 10027267
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645497
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975