The potential for large language models to transform cardiovascular medicine

计算机科学 医学 计算生物学 生物
作者
Giorgio Quer,Eric J. Topol
出处
期刊:The Lancet Digital Health [Elsevier]
标识
DOI:10.1016/s2589-7500(24)00151-1
摘要

Cardiovascular diseases persist as the leading cause of death globally and their early detection and prediction remain a major challenge. Artificial intelligence (AI) tools can help meet this challenge as they have considerable potential for early diagnosis and prediction of occurrence of these diseases. Deep neural networks can improve the accuracy of medical image interpretation and their outputs can provide rich information that otherwise would not be detected by cardiologists. With recent advances in transformer models, multimodal AI, and large language models, the ability to integrate electronic health record data with images, genomics, biosensors, and other data has the potential to improve diagnosis and partition patients who are at high risk for primary preventive strategies. Although much emphasis has been placed on AI supporting clinicians, AI can also serve patients and provide immediate help with diagnosis, such as that of arrhythmia, and is being studied for automated self-imaging. Potential risks, such as loss of data privacy or potential diagnostic errors, should be addressed before use in clinical practice. This Series paper explores opportunities and limitations of AI models for cardiovascular medicine, and aims to identify specific barriers to and solutions in the application of AI models, facilitating their integration into health-care systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙眼肉完成签到,获得积分10
1秒前
所所应助俭朴的一曲采纳,获得10
2秒前
JamesPei应助水博士采纳,获得10
2秒前
fjh完成签到,获得积分20
3秒前
Jtiger完成签到,获得积分10
3秒前
弓纪世完成签到,获得积分10
4秒前
5秒前
5秒前
fjh发布了新的文献求助10
6秒前
无花果应助梦里贪乐采纳,获得10
6秒前
7秒前
7秒前
9秒前
10秒前
10秒前
11秒前
丘比特应助吧嗒嗒采纳,获得10
11秒前
11秒前
调研昵称发布了新的文献求助10
11秒前
12秒前
脑洞疼应助羊羊采纳,获得10
14秒前
思源应助alefa采纳,获得10
14秒前
15秒前
小小虾发布了新的文献求助10
15秒前
Fairy完成签到 ,获得积分10
16秒前
OYZT发布了新的文献求助10
16秒前
hytdr发布了新的文献求助10
16秒前
湖里发布了新的文献求助10
16秒前
lololopopo发布了新的文献求助10
17秒前
xiazhq完成签到,获得积分10
18秒前
19秒前
弓纪世发布了新的文献求助10
20秒前
水博士发布了新的文献求助10
21秒前
22秒前
八爪鱼完成签到,获得积分10
22秒前
22秒前
小小虾完成签到,获得积分10
23秒前
Mireia完成签到,获得积分10
23秒前
25秒前
Hello应助ooouiiiq采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055654
求助须知:如何正确求助?哪些是违规求助? 2712323
关于积分的说明 7430846
捐赠科研通 2357251
什么是DOI,文献DOI怎么找? 1248668
科研通“疑难数据库(出版商)”最低求助积分说明 606786
版权声明 596144