纤维二糖
水解
活动站点
纤维素
基质(水族馆)
催化作用
化学
水解酶
木质纤维素生物量
酶动力学
蛋白质工程
糖苷水解酶
生物化学
立体化学
酶
纤维素酶
生物
生态学
作者
Sauratej Sengupta,Pinaki Chanda,Bharat Manna,Amit Ghosh,Supratim Datta
标识
DOI:10.1021/acs.jpcb.4c03464
摘要
The conversion of lignocellulosic feedstocks by cellulases to glucose is a critical step in biofuel production. β-Glucosidases catalyze the final step in cellulose breakdown, producing glucose, and are often the rate-limiting step in biomass hydrolysis. The specific activity of most natural and engineered β-glucosidase is higher on the artificial substrate p-nitrophenyl β-d-glucopyranoside (pNPGlc) than on the natural substrate, cellobiose. We report an engineered β-glucosidase (Q319A H0HC94) with a 1.8-fold higher specific activity (366.3 ± 36 μmol/min/mg), a 1.5-fold increase in kcat (340.8 ± 27 s–1), and a 3-fold increase in catalytic efficiency (236.65 mM–1 s–1) over H0HC94 (WT) on cellobiose. Molecular dynamic simulations and protein structure network analysis indicate that the Q319A H0HC94 active site pocket is significantly remodeled compared to the WT, leading to changes in enzyme conformation, better accessibility of cellobiose inside the active site pocket, and higher enzymatic activity. This study shows the impact of rational engineering of a nonconserved residue to increase β-glucosidase substrate accessibility and catalytic efficiency by reducing crowding interaction between cellobiose and active site pocket residues near the gatekeeper region and increasing pocket volume and surface area. Thus, rational engineering of previously characterized enzymes could be an excellent strategy to improve cellulose hydrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI