A Biomimetic Adhesive Disc for Robotic Adhesion Sliding Inspired by the Net-Winged Midge Larva

吸浆虫 胶粘剂 粘附 幼虫 仿生学 材料科学 生物 纳米技术 生态学 复合材料 图层(电子)
作者
Haoyuan Xu,Jianhai Zhi,Bohan Chen,Shuyong Zhao,Jie Huang,Changlong Bi,Lei Li,Baohui Tian,Yuchen Liu,Yiyuan Zhang,Jiabao Duan,Fuqiang Yang,Xia He,Kun Xu,Ke Wu,Tianmiao Wang,Pham H. Nguyen,Xilun Ding,Li Wen
出处
期刊:Soft robotics [Mary Ann Liebert]
标识
DOI:10.1089/soro.2023.0253
摘要

Net-winged midge larvae (Blephariceridae) are known for their remarkable ability to adhere to and crawl on the slippery surfaces of rocks in fast-flowing and turbulent alpine streams, waterfalls, and rivers. This remarkable performance can be attributed to the larvae's powerful ventral suckers. In this article, we first develop a theoretical model of the piston-driven sucker that considers the lubricated state of the contact area. We then implement a piston-driven robotic sucker featuring a V-shaped notch to explore the adhesion-sliding mechanism. Each biomimetic larval sucker has the unique feature of an anterior-facing V-shaped notch on its soft disc rim; it slides along the shear direction while the entire disc surface maintains powerful adhesion on the benthic substrate, just like the biological counterpart. We found that this biomimetic sucker can reversibly transit between "high friction" (4.26 ± 0.34 kPa) and "low friction" (0.41 ± 0.02 kPa) states due to the piston movement, resulting in a frictional enhancement of up to 93.9%. We also elucidate the frictional anisotropy (forward/backward force ratio: 0.81) caused by the V-shaped notch. To demonstrate the robotic application of this adhesion-sliding mechanism, we designed an underwater crawling robot Adhesion Sliding Robot-1 (ASR-1) equipped with two biomimetic ventral suckers. This robot can successfully crawl on a variety of substrates such as curved surfaces, sidewalls, and overhangs and against turbulent water currents with a flow speed of 2.4 m/s. In addition, we implemented a fixed-wing aircraft Adhesion Sliding Robot-2 (ASR-2) featuring midge larva-inspired suckers, enabling transit from rapid water surface gliding to adhesion sliding in an aquatic environment. This adhesion-sliding mechanism inspired by net-winged midge larvae may pave the way for future robots with long-term observation, monitoring, and tracking capabilities in a wide variety of aerial and aquatic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Apocalypse_zjz完成签到,获得积分10
2秒前
2秒前
Zhy发布了新的文献求助10
4秒前
5秒前
8秒前
8秒前
9秒前
9秒前
Zhy完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
13秒前
liuyan432完成签到,获得积分10
14秒前
专注半烟完成签到 ,获得积分10
15秒前
shenghaowen完成签到,获得积分10
15秒前
15秒前
orchid完成签到,获得积分10
15秒前
cuizaixu发布了新的文献求助10
15秒前
robi发布了新的文献求助10
15秒前
17秒前
大模型应助小董继续努力采纳,获得10
17秒前
yuyuyuyuyuyuyu完成签到,获得积分10
17秒前
小蘑菇应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
chillin应助科研通管家采纳,获得10
18秒前
桂花乌龙应助科研通管家采纳,获得10
18秒前
Nina应助科研通管家采纳,获得30
18秒前
InfoNinja应助科研通管家采纳,获得30
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
InfoNinja应助科研通管家采纳,获得30
18秒前
研友_850EYZ发布了新的文献求助10
19秒前
21秒前
令狐磬发布了新的文献求助10
22秒前
22秒前
赘婿应助曹志毅采纳,获得10
22秒前
华仔应助曹志毅采纳,获得10
22秒前
林子完成签到 ,获得积分10
25秒前
健壮不斜完成签到 ,获得积分10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785830
关于积分的说明 7774354
捐赠科研通 2441699
什么是DOI,文献DOI怎么找? 1298104
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825