材料科学
电催化剂
硼
兴奋剂
Boosting(机器学习)
硝酸盐
氨
吸收(声学)
氨生产
化学工程
无机化学
纳米技术
电化学
光电子学
电极
复合材料
物理化学
有机化学
化学
机器学习
计算机科学
工程类
作者
Wenjing Liu,Jie Chen,Yuao Wei,Yuxuan He,Yuting Huang,Wei Mo,Yingjie Yu,Nan Yang,Weina Zhang,Linghai Zhang,Faisal Saleem,Fengwei Huo
标识
DOI:10.1002/adfm.202408732
摘要
Abstract The electrochemical reduction of nitrate to ammonia (NO 3 RR) is an effective route to ammonia synthesis with the characteristics of low energy input. However, the complex multi‐electron/proton transfer pathways associated with this reaction may trigger the accumulation of competitive by‐products. Herein, boron (B)‐doped Cu electrode (denoted as B–Cu 2 O/Cu/CP) as “all‐in‐one” catalyst is prepared by one‐step electrodeposition strategy. Caused by the B doping, the charge redistribution and local coordination environment of Cu 2 O/Cu species are modulated, resulting in the exposure of active sites on the Cu 2 O/Cu/CP catalyst. In‐situ Fourier transform infrared spectroscopy and theoretical investigations demonstrate that both Cu 2 O and Cu sites modulated by B can effectively enhance the adsorption of NO 3 − and facilitate the conversion of intermediate by‐products, thus promoting the direct reduction of NO 3 − to NH 3 . Consequently, a remarkable Faradaic efficiency of 92.74% can be obtained on B–Cu 2 O/Cu/CP catalyst with minimal accumulation of by‐products. It is expected that this work, based on the heterogeneous B doping, will open a maneuverable and versatile way for the design of effective catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI