Self-Supervised Molecular Representation Learning With Topology and Geometry

计算机科学 拓扑(电路) 代表(政治) 人工智能 理论计算机科学 数学 组合数学 政治学 政治 法学
作者
Xuan Zang,Junjie Zhang,Buzhou Tang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3479194
摘要

Molecular representation learning is of great importance for drug molecular analysis. The development in molecular representation learning has demonstrated great promise through self-supervised pre-training strategy to overcome the scarcity of labeled molecular property data. Recent studies concentrate on pre-training molecular representation encoders by integrating both 2D topological and 3D geometric structures. However, existing methods rely on molecule-level or atom-level alignment for different views, while overlooking hierarchical self-supervised learning to capture both inter-molecule and intra-molecule correlation. Additionally, most methods employ 2D or 3D encoders to individually extract molecular characteristics locally or globally for molecular property prediction. The potential for effectively fusing these two molecular representations remains to be explored. In this work, we propose a Multi-View Molecular Representation Learning method (MVMRL) for molecular property prediction. First, hierarchical pre-training pretext tasks are designed, including fine-grained atom-level tasks for 2D molecular graphs as well as coarse-grained molecule-level tasks for 3D molecular graphs to provide complementary information to each other. Subsequently, a motif-level fusion pattern of multi-view molecular representations is presented during fine-tuning to enhance the performance of molecular property prediction. We evaluate the effectiveness of the proposed MVMRL by comparing with state-of-the-art baselines on molecular property prediction tasks, and the experimental results demonstrate the superiority of MVMRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梦葵发布了新的文献求助10
刚刚
2秒前
迟迟完成签到 ,获得积分10
2秒前
喷泡的兔子完成签到,获得积分10
4秒前
还单身的凡梅完成签到,获得积分10
6秒前
伯努利发布了新的文献求助10
6秒前
8秒前
虚拟的秋寒完成签到,获得积分10
8秒前
11秒前
12秒前
伯努利完成签到,获得积分10
12秒前
ceicic发布了新的文献求助10
14秒前
hdh016发布了新的文献求助10
17秒前
Kelsey完成签到 ,获得积分10
17秒前
20秒前
21秒前
23秒前
三木完成签到,获得积分10
23秒前
spenley完成签到,获得积分10
23秒前
小马甲应助文静的如娆采纳,获得10
23秒前
芒小果发布了新的文献求助10
26秒前
Jc完成签到 ,获得积分10
27秒前
27秒前
29秒前
士多啤梨完成签到 ,获得积分10
30秒前
30秒前
小叮当完成签到 ,获得积分10
33秒前
慕青应助芒小果采纳,获得10
33秒前
情怀应助文静的如娆采纳,获得10
35秒前
练英雄发布了新的文献求助10
36秒前
生如夏花完成签到,获得积分10
36秒前
panda完成签到,获得积分10
37秒前
卜靖荷给卜靖荷的求助进行了留言
39秒前
斯文败类应助yagkinc采纳,获得10
47秒前
47秒前
饼饼发布了新的文献求助10
52秒前
dnbe完成签到,获得积分10
54秒前
深海鱼完成签到,获得积分10
58秒前
1分钟前
星辰大海应助dnbe采纳,获得10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450