Self-Supervised Molecular Representation Learning With Topology and Geometry

计算机科学 拓扑(电路) 代表(政治) 人工智能 理论计算机科学 数学 组合数学 政治 政治学 法学
作者
Xuan Zang,Junjie Zhang,Buzhou Tang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3479194
摘要

Molecular representation learning is of great importance for drug molecular analysis. The development in molecular representation learning has demonstrated great promise through self-supervised pre-training strategy to overcome the scarcity of labeled molecular property data. Recent studies concentrate on pre-training molecular representation encoders by integrating both 2D topological and 3D geometric structures. However, existing methods rely on molecule-level or atom-level alignment for different views, while overlooking hierarchical self-supervised learning to capture both inter-molecule and intra-molecule correlation. Additionally, most methods employ 2D or 3D encoders to individually extract molecular characteristics locally or globally for molecular property prediction. The potential for effectively fusing these two molecular representations remains to be explored. In this work, we propose a Multi-View Molecular Representation Learning method (MVMRL) for molecular property prediction. First, hierarchical pre-training pretext tasks are designed, including fine-grained atom-level tasks for 2D molecular graphs as well as coarse-grained molecule-level tasks for 3D molecular graphs to provide complementary information to each other. Subsequently, a motif-level fusion pattern of multi-view molecular representations is presented during fine-tuning to enhance the performance of molecular property prediction. We evaluate the effectiveness of the proposed MVMRL by comparing with state-of-the-art baselines on molecular property prediction tasks, and the experimental results demonstrate the superiority of MVMRL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐乐应助石榴汁的书采纳,获得10
刚刚
1秒前
1秒前
怕孤单的绝义完成签到,获得积分10
1秒前
顺利寻真发布了新的文献求助20
2秒前
3秒前
英俊的铭应助无极微光采纳,获得10
3秒前
失眠洋葱发布了新的文献求助10
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
pluto应助ZX采纳,获得10
5秒前
6秒前
小木林发布了新的文献求助10
6秒前
sunny发布了新的文献求助10
7秒前
8秒前
hzt完成签到,获得积分20
9秒前
JM关闭了JM文献求助
9秒前
辛勤的绮琴完成签到,获得积分10
11秒前
无极微光发布了新的文献求助10
13秒前
木泽完成签到,获得积分10
13秒前
科研通AI6应助hzt采纳,获得10
14秒前
小木林完成签到,获得积分10
14秒前
14秒前
天苍野茫发布了新的文献求助10
15秒前
15秒前
asd应助kexian_ning采纳,获得30
16秒前
17秒前
18秒前
19秒前
19秒前
yjf,123发布了新的文献求助10
20秒前
东方元语应助无极微光采纳,获得20
20秒前
20秒前
量子星尘发布了新的文献求助10
20秒前
领导范儿应助史超采纳,获得10
21秒前
完美世界应助雾1206采纳,获得10
22秒前
Li发布了新的文献求助40
22秒前
leo完成签到,获得积分10
23秒前
阳光的小笼包完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031