材料科学
薄板电阻
导电体
透射率
空隙(复合材料)
光电子学
纳米线
透明导电膜
热稳定性
纳米技术
复合材料
化学工程
图层(电子)
工程类
作者
Sanh Vo Thi,Thanh Tai Nguyen,Malkeshkumar Patel,P. K. Bhatnagar,Chanhyuk Choi,Junghyun Lee,Vinh Ai Dao,Joondong Kim
出处
期刊:Small
[Wiley]
日期:2024-10-13
标识
DOI:10.1002/smll.202406006
摘要
Abstract Metallic nanowire‐based transparent conductors (MNTCs) are essential to various technologies, including displays, heat‐regulating windows, and photo‐communication. Hybrid configurations are primarily adopted to design stable, high‐functioning MNTCs. Although hybrid MNTCs enhance electrical performance, they often suffer from optical degradation due to losses associated with the hybrid layers. Highly conductive hybrid MNTCs with minimal reduction in transparency are achieved with AgNWs/Ag(O)/Al‐doped ZnO (AZO) design. The design provides a high visible light transmittance of 95.1%, representing a minimized optical loss of 3% compared to pristine AgNWs by optimizing optical interference between the AZO and Ag(O) layers. Furthermore, it allows for enhanced mobility of metallic nanowires by controlling the selective formation of conductive layers in the voids of the nanowire networks. The oxygen additive enables a continuous Ag ultrathin film of 6 nm in the macro‐voids of AgNWs system, corresponding to 25 times higher mobility for AgNWs/Ag(O)/AZO than that of sole AgNWs. The significant enhancement in the mobility of AgNWs/Ag(O)/AZO induces a reduction of sheet resistance of MNTCs by 73%. The AgNWs/Ag(O)/AZO, with an optimized sheet resistance of 24 Ω sq −1 , is explored for transparent heater applications, demonstrating a fast thermal response with reliable stability, as evidenced by consistent high‐temperature profiles during prolonged operation.
科研通智能强力驱动
Strongly Powered by AbleSci AI