A Physics-Informed Neural Network Approach to Augmented Dynamics Visual Servoing of Multirotors

视觉伺服 动力学(音乐) 人工神经网络 计算机科学 人工智能 物理 图像(数学) 声学
作者
Archit Krishna Kamath,NULL AUTHOR_ID,NULL AUTHOR_ID
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tcyb.2024.3413072
摘要

This article presents a visual servoing strategy that integrates the capabilities of a physics-informed neural network (PINN) to estimate system uncertainties and inaccuracies with a dynamics-centered visual servoing technique for multirotors. The proposed method effectively combines these approaches, eliminating the need for inverse Jacobian calculations to determine multirotor motion by directly relating pixel variations to the multirotor's torque and thrust inputs, while also strengthening the method's robustness through the utilization of the PINN to model and address uncertainties in camera and multirotor parameters, as well as the modeling inaccuracies inherent in the dynamics-centered visual servoing technique. In contrast to existing state-of-the-art data-driven approaches, the proposed PINN approach requires, on average, 65% less labeled data to characterize uncertainties and inaccuracies. To ensure real-time implementation of the visual servoing model, the PINN-learned model is combined with an adaptive horizon monotonically weighted nonlinear model predictive controller (NMPC), capable of processing control efforts at rates 10 times faster than existing Tube MPC and Adaptive MPC strategies. These findings are validated through real-time trajectory tracking experiments, which not only highlight the effectiveness of the proposed approach in approximating modeling inaccuracies but also its capability in handling uncertainties upto 70% in camera parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
稳重的若雁应助小章采纳,获得10
1秒前
1秒前
1秒前
xyz发布了新的文献求助10
3秒前
席傲柏发布了新的文献求助10
5秒前
小段完成签到,获得积分10
7秒前
思源应助小广采纳,获得10
7秒前
科目三应助xyz采纳,获得10
9秒前
顺心的尔安完成签到,获得积分10
9秒前
10秒前
852应助XXDD小吴采纳,获得10
11秒前
13秒前
15秒前
15秒前
科研通AI2S应助席傲柏采纳,获得10
15秒前
liu完成签到,获得积分10
16秒前
16秒前
不配.应助双木夕采纳,获得10
18秒前
liu发布了新的文献求助10
19秒前
雾黎颖完成签到 ,获得积分10
20秒前
grisco发布了新的文献求助10
20秒前
老实小白菜完成签到,获得积分10
20秒前
21秒前
情怀应助怡然涵双采纳,获得10
24秒前
典雅的凛完成签到,获得积分20
24秒前
小小林柒染完成签到,获得积分20
25秒前
小巧的柏柳完成签到 ,获得积分10
25秒前
认真依琴发布了新的文献求助10
28秒前
一二三木偶人完成签到,获得积分10
29秒前
31秒前
斯文败类应助高介安采纳,获得10
39秒前
40秒前
安宁完成签到,获得积分10
40秒前
清脆难胜完成签到,获得积分10
42秒前
研友_闾丘枫完成签到 ,获得积分10
42秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
桐桐应助科研通管家采纳,获得10
43秒前
酷波er应助科研通管家采纳,获得10
43秒前
桐桐应助科研通管家采纳,获得10
43秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136196
求助须知:如何正确求助?哪些是违规求助? 2787119
关于积分的说明 7780500
捐赠科研通 2443236
什么是DOI,文献DOI怎么找? 1298990
科研通“疑难数据库(出版商)”最低求助积分说明 625299
版权声明 600870