亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Moss-m7G: A Motif-Based Interpretable Deep Learning Method for RNA N7-Methlguanosine Site Prediction

苔藓 主题(音乐) 深度学习 人工智能 计算生物学 核糖核酸 计算机科学 生物 生态学 遗传学 物理 基因 声学
作者
Yanxi Zhao,Junru Jin,Wenjia Gao,Jianbo Qiao,Leyi Wei
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (15): 6230-6240 被引量:11
标识
DOI:10.1021/acs.jcim.4c00802
摘要

N-7methylguanosine (m7G) modification plays a crucial role in various biological processes and is closely associated with the development and progression of many cancers. Accurate identification of m7G modification sites is essential for understanding their regulatory mechanisms and advancing cancer therapy. Previous studies often suffered from insufficient research data, underutilization of motif information, and lack of interpretability. In this work, we designed a novel motif-based interpretable method for m7G modification site prediction, called Moss-m7G. This approach enables the analysis of RNA sequences from a motif-centric perspective. Our proposed word-detection module and motif-embedding module within Moss-m7G extract motif information from sequences, transforming the raw sequences from base-level into motif-level and generating embeddings for these motif sequences. Compared with base sequences, motif sequences contain richer contextual information, which is further analyzed and integrated through the Transformer model. We constructed a comprehensive m7G data set to implement the training and testing process to address the data insufficiency noted in prior research. Our experimental results affirm the effectiveness and superiority of Moss-m7G in predicting m7G modification sites. Moreover, the introduction of the word-detection module enhances the interpretability of the model, providing insights into the predictive mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助ppppp采纳,获得10
2秒前
Ava应助polaris采纳,获得30
21秒前
22秒前
重庆森林完成签到,获得积分10
35秒前
58秒前
emmm发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
ppppp发布了新的文献求助10
1分钟前
1分钟前
polaris完成签到,获得积分10
1分钟前
环走鱼尾纹完成签到 ,获得积分10
1分钟前
polaris发布了新的文献求助30
1分钟前
orixero应助emmm采纳,获得10
1分钟前
在水一方应助悠悠采纳,获得10
1分钟前
1分钟前
悠悠发布了新的文献求助10
1分钟前
悠悠完成签到,获得积分20
2分钟前
丘比特应助喜悦的毛衣采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
monica完成签到 ,获得积分10
2分钟前
饱满含玉完成签到,获得积分10
2分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
Criminology34应助科研通管家采纳,获得30
3分钟前
Criminology34应助科研通管家采纳,获得10
3分钟前
安青兰完成签到 ,获得积分10
3分钟前
ppppp发布了新的文献求助10
3分钟前
潜行者完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 520
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5828924
求助须知:如何正确求助?哪些是违规求助? 6038998
关于积分的说明 15575931
捐赠科研通 4948548
什么是DOI,文献DOI怎么找? 2666339
邀请新用户注册赠送积分活动 1611957
关于科研通互助平台的介绍 1566987