疾病
神经元
类固醇
阿尔茨海默病
神经科学
医学
内科学
心理学
激素
作者
Hong-Yi Lin,Yin‐Hsun Feng,Tzu‐Jen Kao,Hsien-Chung Chen,Guan-Yuan Chen,Chiung‐Yuan Ko,Tsung‐I Hsu
标识
DOI:10.1016/j.jsbmb.2024.106585
摘要
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. Recent studies have suggested a potential role for steroid synthesis in AD pathology. This study investigated the co-localization of steroidogenic enzymes in neuronal cells, changes in enzyme expression in an AD mouse model, and steroid expressions in human AD samples. Additionally, we conducted a steroidomic metabolomics analysis and evaluated the effects of dehydroepiandrosterone sulfate (DHEAS) treatment in an AD mouse model. Immunofluorescence analysis revealed significant co-localization of cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and steroidogenic acute regulatory protein (StAR) proteins with α-synuclein in presynaptic neurons, suggesting active steroid synthesis in these cells. Conversely, such co-localization was absent in astrocytes. In the AD mouse model, a marked decrease in the expression of steroidogenic enzymes (Cyp11a1, Cyp17a1, Star) was observed, especially in areas with amyloid beta plaque accumulation. Human AD and MS brain tissues showed similar reductions in StAR and CYP17A1 expressions. Steroidomic analysis indicated a downregulation of key steroids in the serum of AD patients. DHEAS treatment in AD mice resulted in improved cognitive function and reduced Aβ accumulation. Our findings indicate a neuron-specific pathway for steroid synthesis, potentially playing a crucial role in AD pathology. The reduction in steroidogenic enzymes and key steroids in AD models and human samples suggests that impaired steroid synthesis is a feature of neurodegenerative diseases. The therapeutic potential of targeting steroid synthesis pathways, as indicated by the positive effects of DHEAS treatment, warrants further investigation.
科研通智能强力驱动
Strongly Powered by AbleSci AI