Trend analysis and prediction of injury incidence in China from 1990 to 2019 based on Bayesian age–period–cohort model

入射(几何) 伤害预防 毒物控制 医学 人口学 队列 危害 自杀预防 职业安全与健康 人际暴力 队列研究 代群效应 中国 公共卫生 环境卫生 心理学 地理 内科学 病理 物理 考古 社会学 社会心理学 光学
作者
Y. Z. Meng,Chaocai Wang,Yan Liu
出处
期刊:Injury Prevention [BMJ]
卷期号:: ip-045303
标识
DOI:10.1136/ip-2024-045303
摘要

Background Injury is a major challenge to global public health. Analysing the trend of injury incidence in China from 1990 to 2019 and predicting future trends in incidence can provide a theoretical basis for injury prevention and control in China. Methods We collected age-standardised incidence rates of injuries in China from 1990 to 2019 from the Global Burden of Disease 2019 study. We analysed trends using joinpoint regression and age–period–cohort models. A prediction study was conducted using the Bayesian age-period-cohort model. Results From 1990 to 2019, there was an increasing trend in transport injuries, a decreasing trend in unintentional injuries and a decreasing trend in self-harm and interpersonal violence. The high-risk age for transport injuries, unintentional injuries and self-harm and interpersonal violence were 20–69 years (relative risk (RR)>1), ≤14 and ≥80 years (RR>1) and 20–24 years (RR=2.311, 95% CI 2.296 to 2.326), respectively. Projections indicate that by 2030, the incidence of transport and unintentional injuries will increase, whereas the incidence of self-harm and interpersonal violence will decrease. Conclusion The age group with the highest risk of transport injuries, unintentional injuries and self-harm and interpersonal violence were the 20–69 years, ≤ 14 and ≥80 years and 20–24 years age groups, respectively. Transport injuries and unintentional injuries will increase in 2020–2030, while self-harm and interpersonal violence will decrease. These can serve as a basis for developing measures to prevent and manage the impact of injuries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助舒服的茹嫣采纳,获得10
刚刚
1秒前
研究啥发布了新的文献求助10
1秒前
陆小果完成签到,获得积分10
1秒前
2秒前
Dian完成签到,获得积分10
2秒前
xuan完成签到,获得积分10
3秒前
D调的华丽发布了新的文献求助10
3秒前
落后百褶裙完成签到,获得积分10
3秒前
Re完成签到 ,获得积分10
3秒前
popooo完成签到,获得积分10
3秒前
4秒前
4秒前
wjx发布了新的文献求助10
5秒前
神明完成签到,获得积分10
5秒前
知鸢完成签到,获得积分10
5秒前
lgh完成签到,获得积分10
5秒前
XRQ完成签到 ,获得积分10
5秒前
5秒前
77完成签到,获得积分10
6秒前
6秒前
EF完成签到 ,获得积分10
6秒前
思源应助cui采纳,获得10
6秒前
6秒前
7秒前
7秒前
追寻沛萍发布了新的文献求助10
7秒前
7秒前
谦让寻凝完成签到 ,获得积分10
7秒前
cxq发布了新的文献求助10
7秒前
8秒前
AIMS完成签到,获得积分10
8秒前
NOBODY完成签到,获得积分10
9秒前
胡小溪完成签到,获得积分10
9秒前
彭于晏应助tt11111采纳,获得10
9秒前
9秒前
9秒前
雨果完成签到,获得积分10
9秒前
9秒前
Dian发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665057
求助须知:如何正确求助?哪些是违规求助? 4874914
关于积分的说明 15111693
捐赠科研通 4824234
什么是DOI,文献DOI怎么找? 2582679
邀请新用户注册赠送积分活动 1536639
关于科研通互助平台的介绍 1495242