Leveraging Multimodal CycleGAN for the Generation of Anatomically Accurate Synthetic CT Scans from MRIs

计算机科学 人工智能 计算机视觉
作者
Leonardo Crespi,Samuele Camnasio,Damiano Dei,Nicola Lambri,Pietro Mancosu,Marta Scorsetti,Daniele Loiacono
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.10888
摘要

In many clinical settings, the use of both Computed Tomography (CT) and Magnetic Resonance (MRI) is necessary to pursue a thorough understanding of the patient's anatomy and to plan a suitable therapeutical strategy; this is often the case in MRI-based radiotherapy, where CT is always necessary to prepare the dose delivery, as it provides the essential information about the radiation absorption properties of the tissues. Sometimes, MRI is preferred to contour the target volumes. However, this approach is often not the most efficient, as it is more expensive, time-consuming and, most importantly, stressful for the patients. To overcome this issue, in this work, we analyse the capabilities of different configurations of Deep Learning models to generate synthetic CT scans from MRI, leveraging the power of Generative Adversarial Networks (GANs) and, in particular, the CycleGAN architecture, capable of working in an unsupervised manner and without paired images, which were not available. Several CycleGAN models were trained unsupervised to generate CT scans from different MRI modalities with and without contrast agents. To overcome the problem of not having a ground truth, distribution-based metrics were used to assess the model's performance quantitatively, together with a qualitative evaluation where physicians were asked to differentiate between real and synthetic images to understand how realistic the generated images were. The results show how, depending on the input modalities, the models can have very different performances; however, models with the best quantitative results, according to the distribution-based metrics used, can generate very difficult images to distinguish from the real ones, even for physicians, demonstrating the approach's potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助清脆的白晴采纳,获得10
1秒前
顺利煎蛋应助酷酷半芹采纳,获得10
1秒前
xu发布了新的文献求助10
2秒前
谷安发布了新的文献求助10
3秒前
3秒前
3秒前
Lucas应助小豪娃采纳,获得10
3秒前
Mircale完成签到,获得积分20
3秒前
传奇3应助DNAdamage采纳,获得10
5秒前
研友_VZG7GZ应助之遥采纳,获得10
5秒前
平常的可乐完成签到 ,获得积分10
5秒前
Mircale发布了新的文献求助10
6秒前
gaolengtu完成签到 ,获得积分10
7秒前
lw完成签到,获得积分20
7秒前
qorchard完成签到,获得积分10
8秒前
Niki发布了新的文献求助20
9秒前
9秒前
与落发布了新的文献求助10
9秒前
J卡卡K完成签到 ,获得积分10
10秒前
Sun_Chen完成签到,获得积分10
11秒前
12秒前
flyfish完成签到,获得积分10
13秒前
13秒前
15秒前
与落完成签到,获得积分10
17秒前
kenna123发布了新的文献求助10
17秒前
zou发布了新的文献求助10
17秒前
ShengQ完成签到,获得积分10
19秒前
limbo完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
秋风细细雨完成签到 ,获得积分10
23秒前
kkkla发布了新的文献求助10
25秒前
25秒前
26秒前
30秒前
33秒前
Qiancheni完成签到,获得积分10
33秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164075
求助须知:如何正确求助?哪些是违规求助? 2814831
关于积分的说明 7906671
捐赠科研通 2474391
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631797
版权声明 602198