A Modified Debiased Inverse‐Variance Weighted Estimator in Two‐Sample Summary‐Data Mendelian Randomization

孟德尔随机化 估计员 工具变量 统计 观察研究 样本量测定 有效估计量 估计量的偏差 最小方差无偏估计量 均方误差 因果推理 数学 差异(会计) 标准误差 计量经济学 计算机科学 生物 遗传学 会计 遗传变异 基因 基因型 业务
作者
Y.H. Su,Siqi Xu,Y. Ma,Ping Yin,Xingjie Hao,Ji‐Yuan Zhou,Wing K. Fung,Hongwei� Jiang,Peng Wang
出处
期刊:Statistics in Medicine [Wiley]
卷期号:43 (29): 5484-5496 被引量:6
标识
DOI:10.1002/sim.10245
摘要

Mendelian randomization uses genetic variants as instrumental variables to estimate the causal effect of exposure on outcome from observational data. A common challenge in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the exposure of interest, a setting known as many weak instruments. Conventional methods, such as the popular inverse-variance weighted (IVW) estimator, could be heavily biased toward zero when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator and the penalized IVW (pIVW) estimator, which are shown to be robust to many weak instruments, were recently proposed. However, we find that the dIVW estimator tends to produce an exaggerated estimate of the causal effect, especially when the effective sample size is small. Although the pIVW estimator has better statistical properties, it is slightly more complex, and the idea behind this method is also a bit less intuitive. Therefore, we propose a modified debiased IVW (mdIVW) estimator that directly multiplies a shrinkage factor with the original dIVW estimator. After this simple modification, we prove that the mdIVW estimator not only has second-order bias with respect to the effective sample size, but also has smaller variance and mean squared error than the preceding two estimators. We then extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the competing ones through extensive simulation studies and real data analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美好斓发布了新的文献求助30
刚刚
花花世界J发布了新的文献求助10
1秒前
2秒前
2秒前
李健应助子车半邪采纳,获得20
2秒前
充电宝应助科研迪采纳,获得10
3秒前
3秒前
墩子完成签到,获得积分10
3秒前
poison完成签到,获得积分10
3秒前
星空完成签到 ,获得积分10
4秒前
科研通AI5应助阿敬采纳,获得10
4秒前
xxxHolic41完成签到,获得积分10
4秒前
5秒前
刘佳敏完成签到 ,获得积分10
5秒前
大维C完成签到,获得积分10
5秒前
tanglu发布了新的文献求助10
6秒前
6秒前
彭于晏应助zhangyin2024采纳,获得10
6秒前
墩子发布了新的文献求助10
6秒前
雪白水池完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助女娇娥采纳,获得10
8秒前
科研通AI5应助圆圆明越采纳,获得30
8秒前
兔兔发布了新的文献求助10
9秒前
Accept完成签到,获得积分10
9秒前
灵巧的绮菱完成签到 ,获得积分10
9秒前
10秒前
qiannnn发布了新的文献求助10
10秒前
科研通AI5应助余晖霞光采纳,获得10
10秒前
YYY完成签到,获得积分10
10秒前
科研小兵发布了新的文献求助10
11秒前
Lucas应助Yqx采纳,获得10
11秒前
洪流完成签到,获得积分10
11秒前
202211010668发布了新的文献求助20
12秒前
科研通AI5应助dablack采纳,获得10
12秒前
13秒前
13秒前
14秒前
14秒前
jiaozhiping完成签到,获得积分10
14秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
Oribatid mites in Burmese amber I. First record of the family Achipteriidae (Acariformes, Oribatida) in Cretaceous amber, with the description of a new species of Cerachipteria Grandjean, 1935 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725821
求助须知:如何正确求助?哪些是违规求助? 3270855
关于积分的说明 9969218
捐赠科研通 2986238
什么是DOI,文献DOI怎么找? 1638149
邀请新用户注册赠送积分活动 777978
科研通“疑难数据库(出版商)”最低求助积分说明 747365