Coronary artery calcium scans powered by artificial intelligence (AI-CAC) predicts atrial fibrillation and stroke comparably to cardiac magnetic resonance imaging: MESA

医学 冠状动脉钙 心脏病学 心房颤动 磁共振成像 冲程(发动机) 内科学 心脏磁共振 冠状动脉疾病 放射科 机械工程 工程类
作者
Morteza Naghavi,Anthony P. Reeves,Kyle Atlas,Chenyu Zhang,Di Li,Thomas Atlas,Claudia I. Henschke,Nathan D. Wong,Roy Sk,Matthew J. Budoff,David F. Yankelevitz
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2744
摘要

Abstract Background AI-CAC provides more actionable information than the Agatston coronary artery calcium (CAC) score. We have recently shown in the Multi-Ethnic Study of Atherosclerosis (MESA) that AI-CAC automated left atrial (LA) volumetry enabled prediction of atrial fibrillation (AF) as early as one year. In this study we evaluated the performance of AI-CAC LA volumetry versus LA measured by human experts using cardiac magnetic resonance imaging (CMRI) for predicting AF and stroke, and compared them with CHARGE-AF risk score, Agatston score, and NT-proBNP. Methods We used 15-year outcomes data from 3552 asymptomatic individuals (52.2% women, age 61.7±10.2 years) who underwent both CAC scans and CMRI in the MESA baseline examination. CMRI LA volume was previously measured by human experts. Data on BNP, CHARGE-AF risk score and the Agatston score were obtained from MESA. Discrimination was assessed using the time-dependent area under the curve (AUC). Results Over 15 years follow-up, 562 cases of AF and 140 cases of stroke accrued. The AUC for AI-CAC versus CMRI for AF and stroke were not significantly different (0.802 vs. 0.798 and 0.762 vs. 0.751 respectively, p=0.60). AI-CAC significantly improved the continuous Net Reclassification Index (NRI) for prediction of AF and stroke when added to CHARGE-AF risk score (0.28, 0.21), NT-proBNP (0.43, 0.37), and Agatston score (0.69, 0.41) respectively (p for all<0.0001). Conclusion AI-CAC automated LA volumetry and CMRI LA volume measured by human experts similarly predicted incident AF and stroke over 15 years. Further studies to investigate the clinical utility of AI-CAC for AF and stroke prediction are warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY发布了新的文献求助10
刚刚
刚刚
刚刚
kk发布了新的文献求助10
刚刚
aylwtt完成签到,获得积分10
刚刚
大力翠阳完成签到,获得积分10
2秒前
adi完成签到,获得积分10
2秒前
dangniuma发布了新的文献求助10
3秒前
谷槐完成签到,获得积分10
3秒前
烟花应助无辜小小采纳,获得10
3秒前
xiaoshaoxia完成签到,获得积分10
3秒前
orixero应助yunyunya采纳,获得10
4秒前
dddjs完成签到,获得积分10
4秒前
今天只做一件事应助Wind采纳,获得10
5秒前
6秒前
6秒前
Akim应助景行行止采纳,获得10
6秒前
Tourist应助lucky采纳,获得10
7秒前
7秒前
SciGPT应助烟雨夕阳采纳,获得10
7秒前
酷波er应助1111111采纳,获得10
8秒前
欢喜的元霜完成签到,获得积分10
8秒前
简单小土豆完成签到,获得积分10
8秒前
10秒前
无私土豆发布了新的文献求助10
10秒前
无辜的蜗牛完成签到 ,获得积分10
10秒前
11秒前
11秒前
田様应助守得云开见月明采纳,获得10
12秒前
Hermione完成签到,获得积分10
12秒前
Echan发布了新的文献求助10
12秒前
小马甲应助11采纳,获得10
12秒前
边宇发布了新的文献求助10
12秒前
李大大完成签到,获得积分20
13秒前
Zhusy发布了新的文献求助10
14秒前
充电宝应助牂牂采纳,获得10
14秒前
浮游应助浪子采纳,获得10
15秒前
共享精神应助乐融融1采纳,获得10
15秒前
学术小白发布了新的文献求助10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636