Coronary artery calcium scans powered by artificial intelligence (AI-CAC) predicts atrial fibrillation and stroke comparably to cardiac magnetic resonance imaging: MESA

医学 冠状动脉钙 心脏病学 心房颤动 磁共振成像 冲程(发动机) 内科学 心脏磁共振 冠状动脉疾病 放射科 机械工程 工程类
作者
Morteza Naghavi,Anthony P. Reeves,Kyle Atlas,Chenyu Zhang,Di Li,Thomas Atlas,Claudia I. Henschke,Nathan D. Wong,Roy Sk,Matthew J. Budoff,David F. Yankelevitz
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2744
摘要

Abstract Background AI-CAC provides more actionable information than the Agatston coronary artery calcium (CAC) score. We have recently shown in the Multi-Ethnic Study of Atherosclerosis (MESA) that AI-CAC automated left atrial (LA) volumetry enabled prediction of atrial fibrillation (AF) as early as one year. In this study we evaluated the performance of AI-CAC LA volumetry versus LA measured by human experts using cardiac magnetic resonance imaging (CMRI) for predicting AF and stroke, and compared them with CHARGE-AF risk score, Agatston score, and NT-proBNP. Methods We used 15-year outcomes data from 3552 asymptomatic individuals (52.2% women, age 61.7±10.2 years) who underwent both CAC scans and CMRI in the MESA baseline examination. CMRI LA volume was previously measured by human experts. Data on BNP, CHARGE-AF risk score and the Agatston score were obtained from MESA. Discrimination was assessed using the time-dependent area under the curve (AUC). Results Over 15 years follow-up, 562 cases of AF and 140 cases of stroke accrued. The AUC for AI-CAC versus CMRI for AF and stroke were not significantly different (0.802 vs. 0.798 and 0.762 vs. 0.751 respectively, p=0.60). AI-CAC significantly improved the continuous Net Reclassification Index (NRI) for prediction of AF and stroke when added to CHARGE-AF risk score (0.28, 0.21), NT-proBNP (0.43, 0.37), and Agatston score (0.69, 0.41) respectively (p for all<0.0001). Conclusion AI-CAC automated LA volumetry and CMRI LA volume measured by human experts similarly predicted incident AF and stroke over 15 years. Further studies to investigate the clinical utility of AI-CAC for AF and stroke prediction are warranted.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
peikyang发布了新的文献求助10
1秒前
藤原拓海完成签到,获得积分10
1秒前
π1完成签到 ,获得积分10
1秒前
zhangqi发布了新的文献求助10
1秒前
CCL应助wjj采纳,获得20
2秒前
2秒前
单于天宇完成签到,获得积分10
2秒前
2秒前
畅快的南风完成签到,获得积分10
3秒前
猪猪hero完成签到,获得积分10
3秒前
要减肥冰菱完成签到,获得积分10
3秒前
肖静茹完成签到,获得积分20
3秒前
情怀应助啾啾咪咪采纳,获得10
4秒前
奥里给完成签到 ,获得积分10
4秒前
DQ8733完成签到,获得积分10
4秒前
AAAAAAAAAAA发布了新的文献求助10
5秒前
5秒前
鱼与树发布了新的文献求助10
5秒前
sun完成签到,获得积分20
5秒前
lbw完成签到 ,获得积分10
6秒前
领导范儿应助朴素篮球采纳,获得10
6秒前
小刘不笨发布了新的文献求助10
6秒前
6秒前
大方的雪曼完成签到,获得积分10
6秒前
詭詐应助西洲采纳,获得10
6秒前
7秒前
zhangting发布了新的文献求助10
7秒前
玉9989完成签到,获得积分20
7秒前
大方小白发布了新的文献求助10
7秒前
xiaowang完成签到,获得积分10
7秒前
123完成签到,获得积分10
7秒前
轩辕德地发布了新的文献求助10
8秒前
FashionBoy应助chinning采纳,获得10
8秒前
shaohua2011完成签到,获得积分10
8秒前
快乐小白菜应助velpro采纳,获得10
8秒前
舒服的井完成签到,获得积分10
9秒前
脑洞疼应助要减肥冰菱采纳,获得10
9秒前
MADKAI发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678