Dynamic Sampling-Based Meta-Learning Using Multilingual Acoustic Data for Under-Resourced Speech Recognition

计算机科学 发音 语音识别 普通话 音节 字错误率 任务(项目管理) 采样(信号处理) 人工智能 自然语言处理 声学模型 语音语料库 语音处理 语音合成 语言学 哲学 管理 滤波器(信号处理) 计算机视觉 经济
作者
I-Ting Hsieh,Chung‐Hsien Wu,Zhe-Hong Zhao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 106070-106083
标识
DOI:10.1109/access.2024.3437755
摘要

Under-resourced automatic speech recognition (ASR) has become an active field of research and has experienced significant progress during the past decade. However, the performance of under-resourced ASR trained by existing methods is still far inferior to high-resourced ASR for practical applications. In this paper, speech data from languages that share the most phonemes with the under-resourced language are selected as supplementary resources for meta-training based on the Model-Agnostic Meta-Learning (MAML) strategy. Besides supplementary language selection, this paper proposes a dynamic sampling method instead of the original random sampling method to select support and query sets for each task in MAML to improve meta-training performance. In this study, Taiwanese is selected as the under-resourced language, and the speech corpus of five languages, including Mandarin, English, Japanese, Cantonese, and Thai, are chosen as supplementary training data for acoustic model training. The proposed dynamic sampling approach uses phonemes, pronunciation, and speech recognition models as the basis to determine the proportion of each supplementary language to select helpful utterances for MAML. For evaluation, with the selected utterances from each supplementary language for meta-training, we obtained a Word Error Rate of 20.24% and a Syllable Error Rate of 8.35% for Taiwanese ASR, which were better than the baseline model (26.18% and 13.99%) using only the Taiwanese corpus and other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AsingOne发布了新的文献求助10
刚刚
微笑高山完成签到 ,获得积分10
刚刚
科研通AI5应助知性的采珊采纳,获得10
4秒前
5秒前
梧桐完成签到,获得积分10
7秒前
善学以致用应助小楼采纳,获得10
8秒前
拼搏语薇完成签到,获得积分10
8秒前
李健的小迷弟应助4433采纳,获得10
8秒前
wanci应助严笑容采纳,获得30
9秒前
AsingOne完成签到,获得积分20
9秒前
小二郎应助Ultraviolet采纳,获得10
11秒前
丘比特应助Ultraviolet采纳,获得10
11秒前
12秒前
搜集达人应助小王采纳,获得10
13秒前
JamesPei应助宣孤菱采纳,获得10
13秒前
快乐的晟睿完成签到,获得积分10
14秒前
呜呜呜发布了新的文献求助10
14秒前
ch发布了新的文献求助10
14秒前
emmm完成签到,获得积分10
16秒前
liang完成签到,获得积分10
16秒前
Hello应助AsingOne采纳,获得10
16秒前
joyce930728完成签到 ,获得积分10
17秒前
00发布了新的文献求助10
18秒前
不安慕蕊完成签到,获得积分10
19秒前
19秒前
眼睛大的乐儿完成签到,获得积分10
19秒前
20秒前
Owen应助songvv采纳,获得10
21秒前
23秒前
无花果应助hcsdgf采纳,获得10
26秒前
27秒前
小李顺利毕业完成签到,获得积分10
27秒前
h41692011完成签到 ,获得积分10
28秒前
橙子发布了新的文献求助10
29秒前
zzzz完成签到,获得积分10
29秒前
30秒前
30秒前
33秒前
33秒前
对于发布了新的文献求助20
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737518
求助须知:如何正确求助?哪些是违规求助? 3281251
关于积分的说明 10024000
捐赠科研通 2997994
什么是DOI,文献DOI怎么找? 1644924
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749792