Pore Network Modelling of a Lithium Ion Battery Cathode as a Tool for Microstructure Optimization

微观结构 阴极 电池(电) 锂(药物) 锂离子电池 材料科学 离子 计算机科学 化学工程 复合材料 化学 电气工程 工程类 物理 心理学 热力学 功率(物理) 有机化学 精神科
作者
Michael Gilmour McKague,Mohammad Amin Sadeghi,Jeff T. Gostick
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (5): 730-730
标识
DOI:10.1149/ma2024-015730mtgabs
摘要

Lithium ion batteries (LIBs) have become the battery of choice, owning almost 90% of the energy storage market [1]. They boast excellent power and energy density, but performance decreases at high discharge rates limiting their use in large scale applications [2]. With the availability of graphite and silicon materials as anode, the anode in a lithium-ion battery is already well optimized and research has focused primarily on the development of cathode materials with high rate-capacity. A LIB cathode is a porous material comprised of electrolyte, active material, and carbon binder phases. The electrolyte facilitates the migration and diffusion of lithium ions from the anode, through a porous separator, and to the active material where lithium ions intercalate, and electronic current is produced as the battery discharges. A carbon binder phase is also dispersed to enhance the electrical conductivity of the cathode and may even contain micropores that can increase current density [3]. The porous microstructure of a LIB cathode thereby plays an important role in controlling the movement of lithium ions and accessibility of active material effecting both discharge rate and capacity of LIBs. Therefore, tailoring the cathode microstructure provides a route for LIB cathode optimization. Pore scale models that resolve the electrolyte, active material, and carbon binder phases in a cathode can be used for this purpose. Pore scale models offer unique advantages compared to experimental studies in that they can test a wide variety of microstructures, even ones that are not yet realized, in a relatively short time frame. Typical battery models are continuum models that do not resolve the pore space and instead use effective properties determined from experiment. Pore scale models do not use effective properties saving experimental effort but are disadvantageous in that they are computationally very expensive requiring a fine mesh on a highly resolved volumetric image. Of the pore-scale modeling options, pore network modelling (PNM) is an especially efficient approach that discretizes the microstructure into pores and throats where pores are the computational nodes and throats are constrictions connecting pores [4]. In the literature, there is only one known pore network model of a LIB cathode, but it is an isothermal model that does not consider the effect of heat generation from electrochemical reactions [5]. While this model was effective at predicting discharge performance at low currents, predicting the voltage for galvanostatic discharge at high currents proved to be difficult, possibly because of assumed isothermal behaviour. Therefore, this work is focused on the development of a non-isothermal pore network model of a LIB cathode undergoing galvanostatic discharge. The complete set of partial differential equations and their discretization’s for modelling lithium transport, ionic or electronic charge transport, as well as heat transfer in all three phases of a LIB cathode is presented along with the numerical framework used for solving the coupled physics. This framework and discretized set of equations are demonstrated on a pore network extracted from an X-ray tomography image of a NMC532 cathode. Post-processing of the extracted network is done to apply novel interphase nodes between active material and electrolyte phases to provide sites for lithium intercalation to occur. The pore network model is written in Python using OpenPNM, an open-source pore network modelling package [6]. [1] S. Zavahir et al. , “A review on lithium recovery using electrochemical capturing systems,” Desalination , vol. 500, Mar. 2021, doi: 10.1016/j.desal.2020.114883. [2] R. Wagner, N. Preschitschek, S. Passerini, J. Leker, and M. Winter, “Current research trends and prospects among the various materials and designs used in lithium-based batteries,” J Appl Electrochem , vol. 43, no. 5, pp. 481–496, May 2013, doi: 10.1007/S10800-013-0533-6/FIGURES/10. [3] Z. A. Khan et al. , “Probing the Structure-Performance Relationship of Lithium-Ion Battery Cathodes Using Pore-Networks Extracted from Three-Phase Tomograms,” J Electrochem Soc , 2020, doi: 10.1149/1945-7111/ab7bd8. [4] M. McKague, H. Fathiannasab, M. Agnaou, M. A. Sadeghi, and J. Gostick, “Extending pore network models to include electrical double layer effects in micropores for studying capacitive deionization,” Desalination , vol. 535, 2022, doi: 10.1016/j.desal.2022.115784. [5] Z. A. Khan, M. Agnaou, M. A. Sadeghi, A. Elkamel, and J. T. Gostick, “Pore Network Modelling of Galvanostatic Discharge Behaviour of Lithium-Ion Battery Cathodes,” J Electrochem Soc , vol. 168, no. 7, Jul. 2021, doi: 10.1149/1945-7111/ac120c. [6] J. Gostick et al. , “OpenPNM: A Pore Network Modeling Package,” Comput Sci Eng , vol. 18, no. 4, pp. 60–74, Jul. 2016, doi: 10.1109/MCSE.2016.49. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上白羊完成签到,获得积分10
刚刚
无私小小完成签到,获得积分10
1秒前
atopes完成签到,获得积分10
1秒前
世上僅有的榮光之路完成签到,获得积分10
2秒前
Chem34完成签到,获得积分10
2秒前
跳跃完成签到,获得积分10
2秒前
liyuanshan完成签到 ,获得积分10
4秒前
开心采白完成签到 ,获得积分10
5秒前
席江海完成签到,获得积分10
5秒前
carly完成签到 ,获得积分10
5秒前
而当下的完成签到,获得积分10
6秒前
cjh发布了新的文献求助10
7秒前
刘源完成签到,获得积分10
7秒前
缓慢的甜瓜完成签到,获得积分10
7秒前
十二完成签到,获得积分10
7秒前
Yolo完成签到 ,获得积分10
10秒前
是是是WQ完成签到 ,获得积分0
11秒前
靓丽寄文完成签到 ,获得积分10
12秒前
sailingluwl完成签到,获得积分10
12秒前
何日完成签到 ,获得积分10
13秒前
结实擎苍完成签到 ,获得积分10
13秒前
Wangnono完成签到,获得积分10
14秒前
Chris学长完成签到,获得积分10
14秒前
正直的煎饼完成签到,获得积分10
15秒前
南汉高贵的陈皮完成签到 ,获得积分10
15秒前
大意的雨双完成签到 ,获得积分10
16秒前
16秒前
生言生语完成签到,获得积分10
17秒前
19秒前
TN完成签到 ,获得积分10
19秒前
hhh123完成签到,获得积分10
20秒前
少侠不是菜鸟完成签到,获得积分10
20秒前
和谐曼凝完成签到 ,获得积分10
22秒前
hyjcnhyj完成签到,获得积分10
22秒前
23秒前
Bminor完成签到,获得积分10
23秒前
雅悦完成签到,获得积分10
23秒前
务实澜完成签到 ,获得积分10
26秒前
米九完成签到,获得积分10
26秒前
媛媛完成签到 ,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555910
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391334
捐赠科研通 2831220
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890