重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A multi-task learning prediction model for the endpoint of converter steelmaking based on genetic algorithm optimised

人工神经网络 遗传算法 炼钢 算法 任务(项目管理) 计算机科学 碳纤维 冶炼 生物系统 人工智能 材料科学 机器学习 工程类 冶金 系统工程 复合数 生物
作者
Lei Zhu,Anjun Xu,Maoqiang Gu,Li Wang
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241266382
摘要

The temperature and composition of molten steel are important indicators that affect its quality, and a high-precision endpoint prediction model is needed for intelligent smelting using converters. This study addresses the current neglect of the correlation between objectives (temperature and composition) and the need to improve the accuracy of objective prediction. Thus, the potential relationship between molten steel temperature and carbon content is analysed through the metallurgical mechanism and energy balance. A multi-task neural network learning model based on a genetic algorithm, which is used to optimise the weights of loss functions for each task in a multi-task prediction model, is proposed for the high-accuracy simultaneous prediction of the endpoint carbon content and temperature of molten steel in a converter. The model was validated using actual production data from a steel plant. The results showed that within carbon content and temperature error ranges of [−0.02%, 0.02%] and [−15°C, 15°C], respectively, the carbon content–temperature double-hit rate of the model before and after using the genetic algorithm optimised increased by a maximum of 22.5% (W (0.71,0.29) and W (0.6,0.4) ). Compared with the hit rates of single-objective prediction models (genetic algorithm–back propagation neural network, case-based reasoning, and multiple linear regression), within the same error ranges, the hit rate of the proposed model is better by 6.2%, 17.5%, and 7.5%, respectively. This indicates that the developed model simultaneously predicts the endpoint carbon content and temperature of molten steel in a converter with high accuracy, providing a reference for the accurate prediction of converter endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无奈抽屉发布了新的文献求助10
1秒前
tong发布了新的文献求助10
1秒前
Orange应助螺旋飞天放屁采纳,获得10
1秒前
1秒前
在水一方应助KID采纳,获得10
3秒前
852应助氨酰tRNA采纳,获得10
3秒前
successhuang完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
胡晓雨完成签到,获得积分10
4秒前
4秒前
科研通AI6应助xx_y采纳,获得10
4秒前
啊炜发布了新的文献求助10
4秒前
powerfuled发布了新的文献求助10
4秒前
两味愚发布了新的文献求助10
4秒前
5秒前
大模型应助反卷队队长采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助开心向真采纳,获得10
7秒前
望之蔚然发布了新的文献求助10
7秒前
8秒前
清秀忆枫发布了新的文献求助10
8秒前
万能图书馆应助mocheer采纳,获得10
8秒前
8秒前
神勇玉米应助风清扬采纳,获得10
8秒前
qwqe发布了新的文献求助30
9秒前
17发布了新的文献求助10
9秒前
9秒前
猫叫发布了新的文献求助10
10秒前
10秒前
10秒前
不良帅完成签到,获得积分10
10秒前
11秒前
12秒前
Hello应助Chnp采纳,获得10
12秒前
善学以致用应助rose采纳,获得10
12秒前
冷酷男人完成签到,获得积分10
12秒前
Blanca发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467521
求助须知:如何正确求助?哪些是违规求助? 4571250
关于积分的说明 14329350
捐赠科研通 4497873
什么是DOI,文献DOI怎么找? 2464105
邀请新用户注册赠送积分活动 1452935
关于科研通互助平台的介绍 1427673