A multi-task learning prediction model for the endpoint of converter steelmaking based on genetic algorithm optimised

人工神经网络 遗传算法 炼钢 算法 任务(项目管理) 计算机科学 碳纤维 冶炼 生物系统 人工智能 材料科学 机器学习 工程类 冶金 系统工程 复合数 生物
作者
Lei Zhu,Anjun Xu,Maoqiang Gu,Li Wang
出处
期刊:Ironmaking & Steelmaking [Taylor & Francis]
标识
DOI:10.1177/03019233241266382
摘要

The temperature and composition of molten steel are important indicators that affect its quality, and a high-precision endpoint prediction model is needed for intelligent smelting using converters. This study addresses the current neglect of the correlation between objectives (temperature and composition) and the need to improve the accuracy of objective prediction. Thus, the potential relationship between molten steel temperature and carbon content is analysed through the metallurgical mechanism and energy balance. A multi-task neural network learning model based on a genetic algorithm, which is used to optimise the weights of loss functions for each task in a multi-task prediction model, is proposed for the high-accuracy simultaneous prediction of the endpoint carbon content and temperature of molten steel in a converter. The model was validated using actual production data from a steel plant. The results showed that within carbon content and temperature error ranges of [−0.02%, 0.02%] and [−15°C, 15°C], respectively, the carbon content–temperature double-hit rate of the model before and after using the genetic algorithm optimised increased by a maximum of 22.5% (W (0.71,0.29) and W (0.6,0.4) ). Compared with the hit rates of single-objective prediction models (genetic algorithm–back propagation neural network, case-based reasoning, and multiple linear regression), within the same error ranges, the hit rate of the proposed model is better by 6.2%, 17.5%, and 7.5%, respectively. This indicates that the developed model simultaneously predicts the endpoint carbon content and temperature of molten steel in a converter with high accuracy, providing a reference for the accurate prediction of converter endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助纳斯达克采纳,获得10
刚刚
13333完成签到,获得积分10
1秒前
Hello应助小周采纳,获得10
1秒前
Kolanet完成签到,获得积分10
1秒前
Orange应助科研通管家采纳,获得30
2秒前
坦率的匪应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
duohao2023应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得50
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
坦率的匪应助科研通管家采纳,获得10
2秒前
坦率的匪应助科研通管家采纳,获得10
2秒前
猪猪hero应助科研通管家采纳,获得10
2秒前
Zyy发布了新的文献求助30
3秒前
坦率的匪应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
坦率的匪应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
han应助bofu采纳,获得10
5秒前
7秒前
ranjeah完成签到 ,获得积分10
8秒前
8秒前
酷波er应助123采纳,获得10
9秒前
thanhmanhp完成签到,获得积分10
9秒前
丘比特应助grisco采纳,获得10
9秒前
科研小白人完成签到 ,获得积分10
10秒前
10秒前
超级无心完成签到,获得积分10
10秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028