A multi-task learning prediction model for the endpoint of converter steelmaking based on genetic algorithm optimised

人工神经网络 遗传算法 炼钢 算法 任务(项目管理) 计算机科学 碳纤维 冶炼 生物系统 人工智能 材料科学 机器学习 工程类 冶金 系统工程 复合数 生物
作者
Lei Zhu,Anjun Xu,Maoqiang Gu,Li Wang
出处
期刊:Ironmaking & Steelmaking [Informa]
标识
DOI:10.1177/03019233241266382
摘要

The temperature and composition of molten steel are important indicators that affect its quality, and a high-precision endpoint prediction model is needed for intelligent smelting using converters. This study addresses the current neglect of the correlation between objectives (temperature and composition) and the need to improve the accuracy of objective prediction. Thus, the potential relationship between molten steel temperature and carbon content is analysed through the metallurgical mechanism and energy balance. A multi-task neural network learning model based on a genetic algorithm, which is used to optimise the weights of loss functions for each task in a multi-task prediction model, is proposed for the high-accuracy simultaneous prediction of the endpoint carbon content and temperature of molten steel in a converter. The model was validated using actual production data from a steel plant. The results showed that within carbon content and temperature error ranges of [−0.02%, 0.02%] and [−15°C, 15°C], respectively, the carbon content–temperature double-hit rate of the model before and after using the genetic algorithm optimised increased by a maximum of 22.5% (W (0.71,0.29) and W (0.6,0.4) ). Compared with the hit rates of single-objective prediction models (genetic algorithm–back propagation neural network, case-based reasoning, and multiple linear regression), within the same error ranges, the hit rate of the proposed model is better by 6.2%, 17.5%, and 7.5%, respectively. This indicates that the developed model simultaneously predicts the endpoint carbon content and temperature of molten steel in a converter with high accuracy, providing a reference for the accurate prediction of converter endpoints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶一二完成签到,获得积分10
2秒前
2秒前
2秒前
DocZhao完成签到 ,获得积分10
3秒前
apt完成签到,获得积分10
3秒前
3秒前
Three完成签到,获得积分10
4秒前
如果多年后完成签到 ,获得积分10
4秒前
SYLH应助solobang采纳,获得10
5秒前
SYLH应助solobang采纳,获得10
5秒前
灰色与青完成签到,获得积分10
5秒前
852应助幸福胡萝卜采纳,获得10
5秒前
虞无声应助年华采纳,获得10
5秒前
6秒前
香菜发布了新的文献求助10
7秒前
hf发布了新的文献求助10
7秒前
9秒前
爱听歌长颈鹿完成签到,获得积分20
9秒前
852应助抓恐龙采纳,获得10
9秒前
10秒前
小小鱼完成签到,获得积分10
10秒前
10秒前
单薄的小鸽子完成签到,获得积分10
11秒前
12秒前
charon完成签到,获得积分20
12秒前
bkagyin应助fff采纳,获得10
12秒前
小宇发布了新的文献求助10
13秒前
13秒前
1111发布了新的文献求助10
13秒前
单薄凌蝶完成签到,获得积分10
14秒前
14秒前
哄哄完成签到,获得积分10
14秒前
求知若渴完成签到,获得积分10
14秒前
ysf完成签到,获得积分10
15秒前
如意航空完成签到,获得积分10
16秒前
洛杉矶的奥斯卡完成签到,获得积分10
16秒前
yxy完成签到,获得积分10
16秒前
16秒前
Anoxia完成签到,获得积分10
17秒前
wangwenzhe完成签到,获得积分20
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678