High‐Performance Memristors Based on Imine‐Linked Covalent Organic Frameworks Obtained by Using a Protonation Modification Strategy

亚胺 质子化 共价键 化学 记忆电阻器 组合化学 有机化学 催化作用 电气工程 离子 工程类
作者
Qian Che,Chenyu Li,Zhihui Chen,Shuai Yang,Weifeng Zhang,Gui Yu
出处
期刊:Angewandte Chemie [Wiley]
卷期号:136 (48)
标识
DOI:10.1002/ange.202409926
摘要

Abstract Imine‐linked covalent organic frameworks (COFs) are garnering substantial interest in resistive random‐access memory, attributed to their superior crystallinity, excellent chemical and thermal stability, and modifiable molecular structures. However, the development of high‐performance COF‐based memristors impeded by challenges such as low conjugation degree of imine bonds and poor electron delocalization ability. Herein, we report a protonation strategy to modify the imine bonds of donor‐acceptor (D‐A) type COFs. This modification significantly enhances the electron delocalization capability of imine bonds, lowers the energy barriers for electron injection from electrodes, and stabilizes the conductive charge transfer state, thus markedly improving device performance. The protonated COF‐BTT‐BPy and COF‐BTT‐TAPT thin films‐based memristors show remarkable device performance with a high ON/OFF current ratio of 10 5 , a low driving voltage, and outstanding endurance exceeding 600 and 1300 cycles, respectively, which is nearly twice the durability of analogous non‐protonated COFs‐based memristors. Notably, the protonated COF‐BTT‐TAPT‐based memristor exhibit the highest number of cycles reported at present. This work not only unprecedentedly enhances the performance of COF‐based memristors, but also provides a universal and promising approach for the molecular design and potential application of D‐A type imine‐linked COFs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
UP发布了新的文献求助10
刚刚
56789发布了新的文献求助10
1秒前
想s发布了新的文献求助10
1秒前
隐形曼青应助小雒雒采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
Hello应助z1z1z采纳,获得10
3秒前
最重中之重完成签到,获得积分10
3秒前
科目三应助lyz采纳,获得10
4秒前
赘婿应助luping采纳,获得10
4秒前
1111驳回了Owen应助
5秒前
iNk应助旷野采纳,获得20
5秒前
xia发布了新的文献求助10
5秒前
哎呀发布了新的文献求助10
6秒前
XXX关注了科研通微信公众号
6秒前
8秒前
LW发布了新的文献求助10
9秒前
YueLongZ发布了新的文献求助10
9秒前
10秒前
KeYi发布了新的文献求助10
10秒前
Singularity应助zz采纳,获得30
11秒前
FashionBoy应助hhh采纳,获得10
11秒前
11秒前
小雒雒发布了新的文献求助10
13秒前
在水一方应助方小上采纳,获得10
13秒前
在水一方应助liaya采纳,获得10
13秒前
旷野完成签到,获得积分10
14秒前
14秒前
在水一方应助YueLongZ采纳,获得10
14秒前
15秒前
16秒前
16秒前
英姑应助LW采纳,获得10
17秒前
17秒前
小马甲应助小宇仔采纳,获得10
18秒前
zb发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958909
求助须知:如何正确求助?哪些是违规求助? 3505121
关于积分的说明 11122699
捐赠科研通 3236612
什么是DOI,文献DOI怎么找? 1788911
邀请新用户注册赠送积分活动 871431
科研通“疑难数据库(出版商)”最低求助积分说明 802794