Adding traditional and emerging biomarkers for risk assessment in secondary prevention: A prospective cohort study of 20,656 patients with cardiovascular disease

医学 胱抑素C 肾功能 内科学 队列 前瞻性队列研究 肌酐 内分泌学 胱抑素
作者
Ike Dhiah Rochmawati,Salil V. Deo,Jennifer S. Lees,Patrick B. Mark,Naveed Sattar,Carlos Celis‐Morales,Jill P. Pell,Paul Welsh,Frederick K. Ho
出处
期刊:European Journal of Preventive Cardiology [Oxford University Press]
标识
DOI:10.1093/eurjpc/zwae352
摘要

Abstract Background This study aims to explore whether conventional and emerging biomarkers could improve risk discrimination and calibration in secondary prevention of recurrent atherosclerotic cardiovascular disease (ASCVD), based on a model using predictors from SMART2. Methods In a cohort of 20,658 UK Biobank participants with medical history of ASCVD, we analysed any improvement in C indices and net reclassification index (NRI) for future ASCVD events, following addition of LP-a, ApoB, cystatin C, HbA1c, GGT, AST, ALT, and ALP, to a model with predictors used in SMART2 for the outcome of recurrent major cardiovascular event. We also examined any improvement in C indices and NRIs replacing creatinine based estimated glomerular filtration rate (eGFR) with cystatin C based estimates. Calibration plots between different models were also compared. Results Compared with the baseline model (C index=0.663), modest increment in C indices were observed when adding HbA1c (ΔC=0.0064, p<0.001), cystatin C (ΔC=0.0037, p<0.001), GGT (ΔC=0.0023, p<0.001), AST (ΔC= 0.0007, p<0.005) or ALP (ΔC=0.0010, p<0.001) or replacing eGFRCr with eGFRCysC (ΔC=0.0036, p<0.001) or eGFRCr-CysC (ΔC=0.00336, p<0.001). Similarly, the strongest improvements in NRI were observed with the addition of HbA1c (NRI=0.014), or cystatin C (NRI= 0.006) or replacing eGFRCr with eGFRCr-CysC (NRI=0.001) or eGFRCysC (NRI=0.002). There was no evidence that adding biomarkers modify calibration. Conclusions Adding several biomarkers, most notably cystatin C and HbA1c, but not LP-a, in a model using SMART2 predictors modestly improved discrimination.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助葳蕤苍生采纳,获得10
1秒前
浩浩浩完成签到,获得积分10
2秒前
2秒前
欣喜书桃完成签到,获得积分10
3秒前
甜在霖中完成签到 ,获得积分10
4秒前
深情安青应助嘿嘿嘿嘿采纳,获得10
4秒前
4秒前
彭于晏应助huco采纳,获得10
9秒前
RuiLi完成签到,获得积分10
9秒前
ding应助被划分采纳,获得10
9秒前
9秒前
慕青应助一只鹿甜甜采纳,获得10
10秒前
烨霖发布了新的文献求助10
10秒前
酷波er应助冷傲雨寒采纳,获得10
11秒前
蒋时晏完成签到 ,获得积分0
12秒前
GEOPYJ应助i1采纳,获得10
13秒前
Starry给Starry的求助进行了留言
14秒前
moji发布了新的文献求助10
14秒前
传奇3应助Hui_2023采纳,获得10
14秒前
Hello应助有梦想的人采纳,获得10
15秒前
chenpeio完成签到,获得积分20
15秒前
16秒前
17秒前
18秒前
许半仙发布了新的文献求助10
18秒前
18秒前
19秒前
kkssrrrr完成签到 ,获得积分20
19秒前
思源应助烨霖采纳,获得10
19秒前
酷波er应助奶油橘子采纳,获得10
20秒前
20秒前
踏实的诗筠完成签到 ,获得积分10
20秒前
科研通AI2S应助谢志超采纳,获得10
24秒前
可乐发布了新的文献求助10
26秒前
26秒前
26秒前
小艾完成签到,获得积分10
27秒前
28秒前
传奇3应助常常采纳,获得50
29秒前
29秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919