作者
Bowen Zheng,Ruisheng Guo,Xiaoqiang Dou,Yueqing Fu,Bingjun Yang,Xuqing Liu,Feng Zhou
摘要
Abstract Flexible and wearable pressure sensors hold immense promise for health monitoring, covering disease detection and postoperative rehabilitation. Developing pressure sensors with high sensitivity, wide detection range, and cost-effectiveness is paramount. By leveraging paper for its sustainability, biocompatibility, and inherent porous structure, herein, a solution-processed all-paper resistive pressure sensor is designed with outstanding performance. A ternary composite paste, comprising a compressible 3D carbon skeleton, conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), and cohesive carbon nanotubes, is blade-coated on paper and naturally dried to form the porous composite electrode with hierachical micro- and nano-structured surface. Combined with screen-printed Cu electrodes in submillimeter finger widths on rough paper, this creates a multiscale hierarchical contact interface between electrodes, significantly enhancing sensitivity (1014 kPa −1 ) and expanding the detection range (up to 300 kPa) of as-resulted all-paper pressure sensor with low detection limit and power consumption. Its versatility ranges from subtle wrist pulses, robust finger taps, to large-area spatial force detection, highlighting its intricate submillimeter-micrometer-nanometer hierarchical interface and nanometer porosity in the composite electrode. Ultimately, this all-paper resistive pressure sensor, with its superior sensing capabilities, large-scale fabrication potential, and cost-effectiveness, paves the way for next-generation wearable electronics, ushering in an era of advanced, sustainable technological solutions.