Genome-Wide Association Study on Body Conformation Traits in Xinjiang Brown Cattle

全基因组关联研究 遗传力 生物 单核苷酸多态性 遗传学 遗传关联 数量性状位点 候选基因 遗传建筑学 遗传相关 选择(遗传算法) SNP公司 肉牛 基因 遗传变异 基因型 人工智能 计算机科学
作者
Menghua Zhang,Yachun Wang,Qiuming Chen,Dan Wang,Xiaoxue Zhang,Huang Xi-xia,Lei Xu
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:25 (19): 10557-10557
标识
DOI:10.3390/ijms251910557
摘要

Body conformation traits are linked to the health, longevity, reproductivity, and production performance of cattle. These traits are also crucial for herd selection and developing new breeds. This study utilized pedigree information and phenotypic (1185 records) and genomic (The resequencing of 496 Xinjiang Brown cattle generated approximately 74.9 billion reads.) data of Xinjiang Brown cattle to estimate the genetic parameters, perform factor analysis, and conduct a genome-wide association study (GWAS) for these traits. Our results indicated that most traits exhibit moderate to high heritability. The principal factors, which explained 59.12% of the total variance, effectively represented body frame, muscularity, rump, feet and legs, and mammary system traits. Their heritability estimates range from 0.17 to 0.73, with genetic correlations ranging from −0.53 to 0.33. The GWAS identified 102 significant SNPs associated with 12 body conformation traits. A few of the SNPs were located near previously reported genes and quantitative trait loci (QTLs), while others were novel. The key candidate genes such as LCORL, NCAPG, and FAM184B were annotated within 500 Kb upstream and downstream of the significant SNPs. Therefore, factor analysis can be used to simplify multidimensional conformation traits into new variables, thus reducing the computational burden. The identified candidate genes from GWAS can be incorporated into the genomic selection of Xinjiang Brown cattle, enhancing the reliability of breeding programs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
lsx发布了新的文献求助10
2秒前
dili发布了新的文献求助20
2秒前
2秒前
Akim应助富贵李采纳,获得10
2秒前
慕青应助bobo采纳,获得10
3秒前
鬼豆完成签到,获得积分10
3秒前
3秒前
老姚发布了新的文献求助10
4秒前
4秒前
我要向阳而生完成签到 ,获得积分10
4秒前
111完成签到,获得积分10
4秒前
5秒前
852应助乐观笑南采纳,获得10
5秒前
6秒前
6秒前
6秒前
浮游应助Percy采纳,获得10
6秒前
sswbzh应助xxsw采纳,获得200
7秒前
7秒前
lls发布了新的文献求助10
7秒前
wf0806发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
9秒前
上官若男应助sqq采纳,获得10
9秒前
wangxw完成签到,获得积分10
9秒前
Li完成签到,获得积分20
9秒前
10秒前
11秒前
小小K发布了新的文献求助10
11秒前
动听葵阴发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
活在当下发布了新的文献求助10
13秒前
mingtian发布了新的文献求助10
13秒前
青山有别完成签到,获得积分10
14秒前
14秒前
当下最好发布了新的文献求助10
15秒前
17秒前
Zhi_S完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684860
求助须知:如何正确求助?哪些是违规求助? 5039294
关于积分的说明 15185532
捐赠科研通 4843973
什么是DOI,文献DOI怎么找? 2597078
邀请新用户注册赠送积分活动 1549661
关于科研通互助平台的介绍 1508145