DeepPBI-KG: a deep learning method for the prediction of phage-bacteria interactions based on key genes

钥匙(锁) 种内竞争 基因组 人工智能 特征选择 机器学习 人工神经网络 计算机科学 基因 特征(语言学) 计算生物学 生物 数据挖掘 遗传学 生态学 计算机安全 语言学 哲学
作者
Tongqing Wei,Chenqi Lu,Hanxiao Du,Qianru Yang,Xin Qi,Yankun Liu,Yi Zhang,Chen Chen,Yutong Li,Yuanhao Tang,Wenhong Zhang,Tao Xu,Ning Jiang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae484
摘要

Abstract Phages, the natural predators of bacteria, were discovered more than 100 years ago. However, increasing antimicrobial resistance rates have revitalized phage research. Methods that are more time-consuming and efficient than wet-laboratory experiments are needed to help screen phages quickly for therapeutic use. Traditional computational methods usually ignore the fact that phage-bacteria interactions are achieved by key genes and proteins. Methods for intraspecific prediction are rare since almost all existing methods consider only interactions at the species and genus levels. Moreover, most strains in existing databases contain only partial genome information because whole-genome information for species is difficult to obtain. Here, we propose a new approach for interaction prediction by constructing new features from key genes and proteins via the application of K-means sampling to select high-quality negative samples for prediction. Finally, we develop DeepPBI-KG, a corresponding prediction tool based on feature selection and a deep neural network. The results show that the average area under the curve for prediction reached 0.93 for each strain, and the overall AUC and area under the precision-recall curve reached 0.89 and 0.92, respectively, on the independent test set; these values are greater than those of other existing prediction tools. The forward and reverse validation results indicate that key genes and key proteins regulate and influence the interaction, which supports the reliability of the model. In addition, intraspecific prediction experiments based on Klebsiella pneumoniae data demonstrate the potential applicability of DeepPBI-KG for intraspecific prediction. In summary, the feature engineering and interaction prediction approaches proposed in this study can effectively improve the robustness and stability of interaction prediction, can achieve high generalizability, and may provide new directions and insights for rapid phage screening for therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助en采纳,获得10
刚刚
seventhcat发布了新的文献求助30
刚刚
ms完成签到,获得积分10
1秒前
满满啊发布了新的文献求助10
2秒前
Yolo发布了新的文献求助10
2秒前
lourahan发布了新的文献求助10
3秒前
怡然怜烟完成签到,获得积分10
3秒前
5秒前
5秒前
星辰大海应助zmm采纳,获得10
5秒前
6秒前
xueying6767发布了新的文献求助10
8秒前
xuli-888完成签到,获得积分10
8秒前
iNk应助科研通管家采纳,获得20
8秒前
打打应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
Akim应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
seventhcat完成签到,获得积分10
9秒前
9秒前
10秒前
小糊涂完成签到 ,获得积分10
11秒前
小西米完成签到 ,获得积分10
11秒前
李烛尘发布了新的文献求助10
13秒前
聚甲烯吡络烷酮完成签到,获得积分10
14秒前
阿雯姐发布了新的文献求助10
15秒前
16秒前
16秒前
tonyhuang完成签到,获得积分10
18秒前
ruyingxia完成签到,获得积分10
19秒前
Amor发布了新的文献求助10
20秒前
enoch完成签到 ,获得积分10
22秒前
22秒前
Lucas应助Yolo采纳,获得10
23秒前
TrucCSC应助迷路的煎蛋采纳,获得10
23秒前
Flicker完成签到 ,获得积分10
26秒前
慕青应助老实的孤丹采纳,获得10
26秒前
26秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627