DeepPBI-KG: a deep learning method for the prediction of phage-bacteria interactions based on key genes

钥匙(锁) 种内竞争 基因组 人工智能 特征选择 机器学习 人工神经网络 计算机科学 基因 特征(语言学) 计算生物学 生物 数据挖掘 遗传学 生态学 计算机安全 语言学 哲学
作者
Tongqing Wei,Chenqi Lu,Hanxiao Du,Qianru Yang,Xin Qi,Yankun Liu,Yi Zhang,Chen Chen,Yutong Li,Yuanhao Tang,Wenhong Zhang,Tao Xu,Ning Jiang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae484
摘要

Abstract Phages, the natural predators of bacteria, were discovered more than 100 years ago. However, increasing antimicrobial resistance rates have revitalized phage research. Methods that are more time-consuming and efficient than wet-laboratory experiments are needed to help screen phages quickly for therapeutic use. Traditional computational methods usually ignore the fact that phage-bacteria interactions are achieved by key genes and proteins. Methods for intraspecific prediction are rare since almost all existing methods consider only interactions at the species and genus levels. Moreover, most strains in existing databases contain only partial genome information because whole-genome information for species is difficult to obtain. Here, we propose a new approach for interaction prediction by constructing new features from key genes and proteins via the application of K-means sampling to select high-quality negative samples for prediction. Finally, we develop DeepPBI-KG, a corresponding prediction tool based on feature selection and a deep neural network. The results show that the average area under the curve for prediction reached 0.93 for each strain, and the overall AUC and area under the precision-recall curve reached 0.89 and 0.92, respectively, on the independent test set; these values are greater than those of other existing prediction tools. The forward and reverse validation results indicate that key genes and key proteins regulate and influence the interaction, which supports the reliability of the model. In addition, intraspecific prediction experiments based on Klebsiella pneumoniae data demonstrate the potential applicability of DeepPBI-KG for intraspecific prediction. In summary, the feature engineering and interaction prediction approaches proposed in this study can effectively improve the robustness and stability of interaction prediction, can achieve high generalizability, and may provide new directions and insights for rapid phage screening for therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fighting发布了新的文献求助10
刚刚
听话的富发布了新的文献求助10
2秒前
吴某人发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
Suyx发布了新的文献求助10
4秒前
6秒前
李健应助glacial采纳,获得10
7秒前
CipherSage应助xxz采纳,获得10
7秒前
8秒前
英姑应助葛广奔采纳,获得10
8秒前
成就半双发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
10秒前
平淡小凝完成签到,获得积分10
10秒前
10秒前
无花果应助王铭智采纳,获得10
10秒前
zwy完成签到,获得积分10
11秒前
今天吃啥发布了新的文献求助30
11秒前
在水一方应助yao采纳,获得10
11秒前
浮游应助哈尼采纳,获得10
11秒前
Satan完成签到,获得积分10
11秒前
zhuyuxin发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
乐观无心发布了新的文献求助10
14秒前
韩立发布了新的文献求助10
15秒前
虞丹萱发布了新的文献求助10
15秒前
十月完成签到 ,获得积分10
15秒前
NANA完成签到,获得积分20
15秒前
张长江发布了新的文献求助10
15秒前
曲淳发布了新的文献求助10
16秒前
慕青应助听话的富采纳,获得10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007