清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DeepPBI-KG: a deep learning method for the prediction of phage-bacteria interactions based on key genes

钥匙(锁) 种内竞争 基因组 人工智能 特征选择 机器学习 人工神经网络 计算机科学 基因 特征(语言学) 计算生物学 生物 数据挖掘 遗传学 生态学 计算机安全 语言学 哲学
作者
Tongqing Wei,Chenqi Lu,Hanxiao Du,Qianru Yang,Xin Qi,Yankun Liu,Yi Zhang,Chen Chen,Yutong Li,Yuanhao Tang,Wenhong Zhang,Tao Xu,Ning Jiang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae484
摘要

Abstract Phages, the natural predators of bacteria, were discovered more than 100 years ago. However, increasing antimicrobial resistance rates have revitalized phage research. Methods that are more time-consuming and efficient than wet-laboratory experiments are needed to help screen phages quickly for therapeutic use. Traditional computational methods usually ignore the fact that phage-bacteria interactions are achieved by key genes and proteins. Methods for intraspecific prediction are rare since almost all existing methods consider only interactions at the species and genus levels. Moreover, most strains in existing databases contain only partial genome information because whole-genome information for species is difficult to obtain. Here, we propose a new approach for interaction prediction by constructing new features from key genes and proteins via the application of K-means sampling to select high-quality negative samples for prediction. Finally, we develop DeepPBI-KG, a corresponding prediction tool based on feature selection and a deep neural network. The results show that the average area under the curve for prediction reached 0.93 for each strain, and the overall AUC and area under the precision-recall curve reached 0.89 and 0.92, respectively, on the independent test set; these values are greater than those of other existing prediction tools. The forward and reverse validation results indicate that key genes and key proteins regulate and influence the interaction, which supports the reliability of the model. In addition, intraspecific prediction experiments based on Klebsiella pneumoniae data demonstrate the potential applicability of DeepPBI-KG for intraspecific prediction. In summary, the feature engineering and interaction prediction approaches proposed in this study can effectively improve the robustness and stability of interaction prediction, can achieve high generalizability, and may provide new directions and insights for rapid phage screening for therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
26秒前
Zj发布了新的文献求助10
29秒前
小陈陈发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
33秒前
38秒前
32429606完成签到 ,获得积分10
46秒前
淞淞于我完成签到 ,获得积分10
1分钟前
kyle完成签到 ,获得积分10
1分钟前
TOUHOUU完成签到 ,获得积分10
1分钟前
1分钟前
耶耶发布了新的文献求助10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
优秀的白卉完成签到 ,获得积分10
2分钟前
小白完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
科研狗完成签到 ,获得积分10
2分钟前
勤恳的书文完成签到 ,获得积分10
2分钟前
玄之又玄完成签到,获得积分10
2分钟前
陈好好完成签到 ,获得积分10
2分钟前
李某发布了新的文献求助10
2分钟前
dywen完成签到,获得积分10
2分钟前
2012csc完成签到 ,获得积分0
2分钟前
AURORA丶完成签到 ,获得积分10
2分钟前
violetlishu完成签到 ,获得积分10
2分钟前
huanghe完成签到,获得积分10
2分钟前
3分钟前
yinyin完成签到 ,获得积分10
3分钟前
3分钟前
十七完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
YifanWang应助科研通管家采纳,获得30
3分钟前
柳叶坚刀完成签到,获得积分10
4分钟前
快乐随心完成签到 ,获得积分10
4分钟前
缘分完成签到,获得积分10
4分钟前
123哈哈哈321完成签到,获得积分10
4分钟前
AZN完成签到 ,获得积分10
4分钟前
4分钟前
israr完成签到,获得积分10
4分钟前
华仔应助123哈哈哈321采纳,获得10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503115
关于积分的说明 11111325
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292