DeepPBI-KG: a deep learning method for the prediction of phage-bacteria interactions based on key genes

钥匙(锁) 种内竞争 基因组 人工智能 特征选择 机器学习 人工神经网络 计算机科学 基因 特征(语言学) 计算生物学 生物 数据挖掘 遗传学 生态学 计算机安全 语言学 哲学
作者
Tongqing Wei,Chenqi Lu,Hanxiao Du,Qianru Yang,Xin Qi,Yankun Liu,Yi Zhang,Chen Chen,Yutong Li,Yuanhao Tang,Wenhong Zhang,Tao Xu,Ning Jiang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (6)
标识
DOI:10.1093/bib/bbae484
摘要

Abstract Phages, the natural predators of bacteria, were discovered more than 100 years ago. However, increasing antimicrobial resistance rates have revitalized phage research. Methods that are more time-consuming and efficient than wet-laboratory experiments are needed to help screen phages quickly for therapeutic use. Traditional computational methods usually ignore the fact that phage-bacteria interactions are achieved by key genes and proteins. Methods for intraspecific prediction are rare since almost all existing methods consider only interactions at the species and genus levels. Moreover, most strains in existing databases contain only partial genome information because whole-genome information for species is difficult to obtain. Here, we propose a new approach for interaction prediction by constructing new features from key genes and proteins via the application of K-means sampling to select high-quality negative samples for prediction. Finally, we develop DeepPBI-KG, a corresponding prediction tool based on feature selection and a deep neural network. The results show that the average area under the curve for prediction reached 0.93 for each strain, and the overall AUC and area under the precision-recall curve reached 0.89 and 0.92, respectively, on the independent test set; these values are greater than those of other existing prediction tools. The forward and reverse validation results indicate that key genes and key proteins regulate and influence the interaction, which supports the reliability of the model. In addition, intraspecific prediction experiments based on Klebsiella pneumoniae data demonstrate the potential applicability of DeepPBI-KG for intraspecific prediction. In summary, the feature engineering and interaction prediction approaches proposed in this study can effectively improve the robustness and stability of interaction prediction, can achieve high generalizability, and may provide new directions and insights for rapid phage screening for therapy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
www完成签到,获得积分10
2秒前
3秒前
3秒前
222发布了新的文献求助10
3秒前
黄量杰成发布了新的文献求助10
4秒前
5秒前
5秒前
sansan完成签到 ,获得积分10
6秒前
manru发布了新的文献求助10
6秒前
6秒前
7秒前
ASIS完成签到,获得积分10
7秒前
刘祥发布了新的文献求助10
7秒前
虚拟的柠檬完成签到,获得积分10
8秒前
9秒前
run发布了新的文献求助50
10秒前
赵乂发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
lyt发布了新的文献求助10
11秒前
yunyueqixun完成签到 ,获得积分10
11秒前
倪侃发布了新的文献求助10
11秒前
时567完成签到,获得积分10
11秒前
manru完成签到,获得积分10
11秒前
12秒前
sure发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
小郑不睡觉完成签到 ,获得积分10
14秒前
14秒前
15秒前
nenoaowu发布了新的文献求助10
15秒前
我是老大应助黄量杰成采纳,获得200
16秒前
Orange应助闲听花落采纳,获得10
16秒前
浮游应助222采纳,获得10
18秒前
Su应助misong采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
NexusExplorer应助初生西红柿采纳,获得10
19秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981