大地电磁法
概化理论
人工神经网络
各向异性
深度学习
反演(地质)
稳健性(进化)
地球物理学
人工智能
计算机科学
地质学
机器学习
地震学
电阻率和电导率
工程类
数学
生物化学
统计
物理
化学
量子力学
基因
电气工程
构造学
作者
Zhu Yusheng,Yu Gu,Jintong Xu
标识
DOI:10.1190/gem2024-072.1
摘要
Anisotropy is a prevalent phenomenon in geophysical investigations, serving a crucial function in geological interpretation and geophysical inversion methodologies. Given its significance in accurately characterizing subsurface structures, there has been substantial scholarly focus on anisotropy. In the present study, we delineate an approach leveraging deep learning techniques to discern anisotropic structures from magnetotelluric responses. Parallel to conventional data-driven deep learning inversion methodologies, we curated a sample set of twenty million instances for neural network training. Subsequent sample evaluations were undertaken to validate the network's generalizability, robustness, and reliability.
科研通智能强力驱动
Strongly Powered by AbleSci AI