Atomic-engineered gradient tunable solid-state metamaterials

超材料 固态 国家(计算机科学) 材料科学 计算机科学 工程物理 光电子学 物理 程序设计语言
作者
Zhiyuan Yan,Albertus D. Handoko,Weikang Wu,Chuchu Yang,Hao Wang,Meltem Yilmaz,Zhiyong Zhang,Libo Cheng,Xinbin Cheng,Ghim Wei Ho,Feng Bin,Naoya Shibata,Rong Zhao,Joel K. W. Yang,Chong Tow Chong,Yuichi Ikuhara,Cheng-Wei Qiu
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (39)
标识
DOI:10.1073/pnas.2408974121
摘要

Metamaterial has been captivated a popular notion, offering photonic functionalities beyond the capabilities of natural materials. Its desirable functionality primarily relies on well-controlled conditions such as structural resonance, dispersion, geometry, filling fraction, external actuation, etc. However, its fundamental building blocks-meta-atoms-still rely on naturally occurring substances. Here, we propose and validate the concept of gradient and reversible atomic-engineered metamaterials (GRAM), which represents a platform for continuously tunable solid metaphotonics by atomic manipulation. GRAM consists of an atomic heterogenous interface of amorphous host and noble metals at the bottom, and the top interface was designed to facilitate the reversible movement of foreign atoms. Continuous and reversible changes in GRAM's refractive index and atomic structures are observed in the presence of a thermal field. We achieve multiple optical states of GRAM at varying temperature and time and demonstrate GRAM-based tunable nanophotonic devices in the visible spectrum. Further, high-efficiency and programmable laser raster-scanning patterns can be locally controlled by adjusting power and speed, without any mask-assisted or complex nanofabrication. Our approach casts a distinct, multilevel, and reversible postfabrication recipe to modify a solid material's properties at the atomic scale, opening avenues for optical materials engineering, information storage, display, and encryption, as well as advanced thermal optics and photonics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助美好的大白采纳,获得10
刚刚
1秒前
2秒前
许三问完成签到 ,获得积分0
2秒前
CipherSage应助Flanker采纳,获得10
3秒前
134发布了新的文献求助10
4秒前
半夏发布了新的文献求助10
4秒前
000发布了新的文献求助10
5秒前
ljx完成签到,获得积分10
6秒前
Tracy完成签到,获得积分10
7秒前
7秒前
CodeCraft应助琪琪采纳,获得10
8秒前
我不是BOB完成签到,获得积分10
8秒前
风夏完成签到,获得积分10
8秒前
Lucas应助新疆彭于晏采纳,获得10
8秒前
11秒前
12秒前
yufanhui应助我不是BOB采纳,获得10
12秒前
qqq发布了新的文献求助10
14秒前
15秒前
CLL完成签到,获得积分20
15秒前
吸灵气的猫完成签到,获得积分10
15秒前
大胆的擎苍完成签到,获得积分10
15秒前
16秒前
16秒前
九姑娘完成签到 ,获得积分10
16秒前
18秒前
研友_Z1xbgn发布了新的文献求助10
20秒前
琪琪发布了新的文献求助10
21秒前
21秒前
31Ga完成签到,获得积分10
21秒前
居学尉完成签到,获得积分10
23秒前
23秒前
23秒前
孟子豪发布了新的文献求助10
24秒前
蜂蜜柚子完成签到 ,获得积分10
26秒前
研友_Z1xbgn完成签到,获得积分20
27秒前
27秒前
lzy发布了新的文献求助10
30秒前
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316498
求助须知:如何正确求助?哪些是违规求助? 2948223
关于积分的说明 8539677
捐赠科研通 2624118
什么是DOI,文献DOI怎么找? 1435867
科研通“疑难数据库(出版商)”最低求助积分说明 665703
邀请新用户注册赠送积分活动 651634