On-Demand Design of Metasurfaces through Multineural Network Fusion

自编码 计算机科学 光谱图 潜变量 变量(数学) 人工神经网络 生成模型 算法 人工智能 模式识别(心理学) 生成语法 数学 数学分析
作者
Junwei Li,Chengfu yang,A Qinhua,Qiusong Lan,Lijun Yun,Yuelong Xia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (37): 49673-49686 被引量:5
标识
DOI:10.1021/acsami.4c11972
摘要

In this paper, a multineural network fusion freestyle metasurface on-demand design method is proposed. The on-demand design method involves rapidly generating corresponding metasurface patterns based on the user-defined spectrum. The generated patterns are then input into a simulator to predict their corresponding S-parameter spectrogram, which is subsequently analyzed against the real S-parameter spectrogram to verify whether the generated metasurface patterns meet the desired requirements. The methodology is based on three neural network models: a Wasserstein Generative Adversarial Network model with a U-net architecture (U-WGAN) for inverse structural design, a Variational Autoencoder (VAE) model for compression, and an LSTM + Attention model for forward S-parameter spectrum prediction validation. The U-WGAN is utilized for on-demand reverse structural design, aiming to rapidly discover high-fidelity metasurface patterns that meet specific electromagnetic spectrum responses. The VAE, as a probabilistic generation model, serves as a bridge, mapping input data to latent space and transforming it into latent variable data, providing crucial input for a forward S-parameter spectrum prediction model. The LSTM + Attention network, acting as a forward S-parameter spectrum prediction model, can accurately and efficiently predict the S-parameter spectrum corresponding to the latent variable data and compare it with the real spectrum. In addition, the digits "0" and "1" are used in the design to represent vacuum and metallic materials, respectively, and a 10 × 10 cell array of freestyle metasurface patterns is constructed. The significance of the research method proposed in this paper lies in the following: (1) The freestyle metasurface design significantly expands the possibility of metamaterial design, enabling the creation of diverse metasurface structures that are difficult to achieve with traditional methods. (2) The on-demand design approach can generate high-fidelity metasurface patterns that meet the expected electromagnetic characteristics and responses. (3) The fusion of multiple neural networks demonstrates high flexibility, allowing for the adjustment of network structures and training methods based on specific design requirements and data characteristics, thus better accommodating different design problems and optimization objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
维斯完成签到 ,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
江姜酱先生完成签到,获得积分10
2秒前
12138发布了新的文献求助10
2秒前
2秒前
3秒前
斯内克完成签到,获得积分10
3秒前
3秒前
Ava应助白一寒采纳,获得10
3秒前
柒八染发布了新的文献求助10
4秒前
4秒前
顺心煎蛋发布了新的文献求助10
5秒前
椛鈊发布了新的文献求助10
5秒前
孤独凝海完成签到,获得积分20
5秒前
Ava应助小寒同学采纳,获得10
7秒前
7秒前
英吉利25发布了新的文献求助10
7秒前
www发布了新的文献求助10
7秒前
852应助pgg147852采纳,获得10
8秒前
nut发布了新的文献求助10
8秒前
LW发布了新的文献求助10
9秒前
健壮的弼完成签到,获得积分10
10秒前
兰闹儿发布了新的文献求助10
10秒前
111发布了新的文献求助10
10秒前
科研通AI6应助Starrrrre采纳,获得10
10秒前
哈哈鹿发布了新的文献求助10
10秒前
鲤鱼孤兰完成签到,获得积分10
11秒前
李健的小迷弟应助杨仔采纳,获得10
11秒前
12秒前
12秒前
13秒前
lucy完成签到,获得积分10
13秒前
13秒前
顺心煎蛋完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646