亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Demand Design of Metasurfaces through Multineural Network Fusion

自编码 计算机科学 光谱图 潜变量 变量(数学) 人工神经网络 生成模型 算法 人工智能 模式识别(心理学) 生成语法 数学 数学分析
作者
Junwei Li,Chengfu yang,A Qinhua,Qiusong Lan,Lijun Yun,Yuelong Xia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (37): 49673-49686 被引量:2
标识
DOI:10.1021/acsami.4c11972
摘要

In this paper, a multineural network fusion freestyle metasurface on-demand design method is proposed. The on-demand design method involves rapidly generating corresponding metasurface patterns based on the user-defined spectrum. The generated patterns are then input into a simulator to predict their corresponding S-parameter spectrogram, which is subsequently analyzed against the real S-parameter spectrogram to verify whether the generated metasurface patterns meet the desired requirements. The methodology is based on three neural network models: a Wasserstein Generative Adversarial Network model with a U-net architecture (U-WGAN) for inverse structural design, a Variational Autoencoder (VAE) model for compression, and an LSTM + Attention model for forward S-parameter spectrum prediction validation. The U-WGAN is utilized for on-demand reverse structural design, aiming to rapidly discover high-fidelity metasurface patterns that meet specific electromagnetic spectrum responses. The VAE, as a probabilistic generation model, serves as a bridge, mapping input data to latent space and transforming it into latent variable data, providing crucial input for a forward S-parameter spectrum prediction model. The LSTM + Attention network, acting as a forward S-parameter spectrum prediction model, can accurately and efficiently predict the S-parameter spectrum corresponding to the latent variable data and compare it with the real spectrum. In addition, the digits "0" and "1" are used in the design to represent vacuum and metallic materials, respectively, and a 10 × 10 cell array of freestyle metasurface patterns is constructed. The significance of the research method proposed in this paper lies in the following: (1) The freestyle metasurface design significantly expands the possibility of metamaterial design, enabling the creation of diverse metasurface structures that are difficult to achieve with traditional methods. (2) The on-demand design approach can generate high-fidelity metasurface patterns that meet the expected electromagnetic characteristics and responses. (3) The fusion of multiple neural networks demonstrates high flexibility, allowing for the adjustment of network structures and training methods based on specific design requirements and data characteristics, thus better accommodating different design problems and optimization objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
37秒前
42秒前
赘婿应助科研通管家采纳,获得10
47秒前
1分钟前
可可爱爱毛毛完成签到 ,获得积分10
1分钟前
休斯顿完成签到,获得积分10
1分钟前
1分钟前
独特的香魔完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
luluzhu发布了新的文献求助10
2分钟前
luluzhu完成签到,获得积分10
2分钟前
3分钟前
3分钟前
Panther完成签到,获得积分10
3分钟前
沙海沉戈完成签到,获得积分0
4分钟前
研友_VZG7GZ应助Mannone采纳,获得10
4分钟前
华理附院孙文博完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
Mannone完成签到,获得积分10
4分钟前
Mannone发布了新的文献求助10
5分钟前
燕晓啸完成签到 ,获得积分0
5分钟前
zsmj23完成签到 ,获得积分0
5分钟前
今后应助mellow采纳,获得10
6分钟前
田様应助可靠的寒风采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
mellow发布了新的文献求助10
6分钟前
6分钟前
6分钟前
NexusExplorer应助可靠的寒风采纳,获得10
6分钟前
善学以致用应助lyh的老公采纳,获得10
7分钟前
满意的伊完成签到,获得积分10
7分钟前
顾建瑜发布了新的文献求助10
8分钟前
共享精神应助淡然的妙芙采纳,获得50
8分钟前
yipmyonphu完成签到,获得积分10
8分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5105124
求助须知:如何正确求助?哪些是违规求助? 4315104
关于积分的说明 13444036
捐赠科研通 4143627
什么是DOI,文献DOI怎么找? 2270533
邀请新用户注册赠送积分活动 1273047
关于科研通互助平台的介绍 1210145