On-Demand Design of Metasurfaces through Multineural Network Fusion

自编码 计算机科学 光谱图 潜变量 变量(数学) 人工神经网络 生成模型 算法 人工智能 模式识别(心理学) 生成语法 数学 数学分析
作者
Junwei Li,Chengfu yang,A Qinhua,Qiusong Lan,Lijun Yun,Yuelong Xia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (37): 49673-49686
标识
DOI:10.1021/acsami.4c11972
摘要

In this paper, a multineural network fusion freestyle metasurface on-demand design method is proposed. The on-demand design method involves rapidly generating corresponding metasurface patterns based on the user-defined spectrum. The generated patterns are then input into a simulator to predict their corresponding S-parameter spectrogram, which is subsequently analyzed against the real S-parameter spectrogram to verify whether the generated metasurface patterns meet the desired requirements. The methodology is based on three neural network models: a Wasserstein Generative Adversarial Network model with a U-net architecture (U-WGAN) for inverse structural design, a Variational Autoencoder (VAE) model for compression, and an LSTM + Attention model for forward S-parameter spectrum prediction validation. The U-WGAN is utilized for on-demand reverse structural design, aiming to rapidly discover high-fidelity metasurface patterns that meet specific electromagnetic spectrum responses. The VAE, as a probabilistic generation model, serves as a bridge, mapping input data to latent space and transforming it into latent variable data, providing crucial input for a forward S-parameter spectrum prediction model. The LSTM + Attention network, acting as a forward S-parameter spectrum prediction model, can accurately and efficiently predict the S-parameter spectrum corresponding to the latent variable data and compare it with the real spectrum. In addition, the digits "0" and "1" are used in the design to represent vacuum and metallic materials, respectively, and a 10 × 10 cell array of freestyle metasurface patterns is constructed. The significance of the research method proposed in this paper lies in the following: (1) The freestyle metasurface design significantly expands the possibility of metamaterial design, enabling the creation of diverse metasurface structures that are difficult to achieve with traditional methods. (2) The on-demand design approach can generate high-fidelity metasurface patterns that meet the expected electromagnetic characteristics and responses. (3) The fusion of multiple neural networks demonstrates high flexibility, allowing for the adjustment of network structures and training methods based on specific design requirements and data characteristics, thus better accommodating different design problems and optimization objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助热闹的冬天采纳,获得10
刚刚
刚刚
1秒前
2秒前
星辰大海应助小孙采纳,获得10
3秒前
3秒前
XZY发布了新的文献求助10
4秒前
飞儿随缘完成签到,获得积分10
4秒前
17671098402发布了新的文献求助10
4秒前
欢呼的晓夏完成签到 ,获得积分10
5秒前
lt发布了新的文献求助10
6秒前
张丁完成签到,获得积分10
6秒前
Bob发布了新的文献求助30
6秒前
星辰大海应助无辜妙松采纳,获得80
7秒前
Dxy-TOFA完成签到,获得积分10
10秒前
段章完成签到 ,获得积分10
11秒前
传奇3应助qia8qia采纳,获得10
11秒前
科研通AI2S应助单薄晓露采纳,获得10
12秒前
独特的紫蓝应助玉米侠采纳,获得10
12秒前
12秒前
13秒前
苹果丑应助帝国之花采纳,获得30
13秒前
15秒前
小孙发布了新的文献求助10
16秒前
石中玉完成签到,获得积分10
17秒前
hhhh_xt发布了新的文献求助10
18秒前
evak发布了新的文献求助10
18秒前
Bob完成签到,获得积分20
18秒前
xiaozy完成签到,获得积分10
19秒前
19秒前
QuangVu完成签到,获得积分10
20秒前
21秒前
隐形曼青应助拼死拼活采纳,获得10
21秒前
22秒前
tutu131452发布了新的文献求助30
22秒前
小孟吖发布了新的文献求助10
24秒前
糊涂涂完成签到,获得积分10
25秒前
lucy_qian发布了新的文献求助10
25秒前
科研通AI2S应助hy采纳,获得10
25秒前
上官若男应助JHY采纳,获得10
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256323
求助须知:如何正确求助?哪些是违规求助? 2898596
关于积分的说明 8301615
捐赠科研通 2567759
什么是DOI,文献DOI怎么找? 1394681
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630557