亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

On-Demand Design of Metasurfaces through Multineural Network Fusion

自编码 计算机科学 光谱图 潜变量 变量(数学) 人工神经网络 生成模型 算法 人工智能 模式识别(心理学) 生成语法 数学 数学分析
作者
Junwei Li,Chengfu yang,A Qinhua,Qiusong Lan,Lijun Yun,Yuelong Xia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (37): 49673-49686
标识
DOI:10.1021/acsami.4c11972
摘要

In this paper, a multineural network fusion freestyle metasurface on-demand design method is proposed. The on-demand design method involves rapidly generating corresponding metasurface patterns based on the user-defined spectrum. The generated patterns are then input into a simulator to predict their corresponding S-parameter spectrogram, which is subsequently analyzed against the real S-parameter spectrogram to verify whether the generated metasurface patterns meet the desired requirements. The methodology is based on three neural network models: a Wasserstein Generative Adversarial Network model with a U-net architecture (U-WGAN) for inverse structural design, a Variational Autoencoder (VAE) model for compression, and an LSTM + Attention model for forward S-parameter spectrum prediction validation. The U-WGAN is utilized for on-demand reverse structural design, aiming to rapidly discover high-fidelity metasurface patterns that meet specific electromagnetic spectrum responses. The VAE, as a probabilistic generation model, serves as a bridge, mapping input data to latent space and transforming it into latent variable data, providing crucial input for a forward S-parameter spectrum prediction model. The LSTM + Attention network, acting as a forward S-parameter spectrum prediction model, can accurately and efficiently predict the S-parameter spectrum corresponding to the latent variable data and compare it with the real spectrum. In addition, the digits "0" and "1" are used in the design to represent vacuum and metallic materials, respectively, and a 10 × 10 cell array of freestyle metasurface patterns is constructed. The significance of the research method proposed in this paper lies in the following: (1) The freestyle metasurface design significantly expands the possibility of metamaterial design, enabling the creation of diverse metasurface structures that are difficult to achieve with traditional methods. (2) The on-demand design approach can generate high-fidelity metasurface patterns that meet the expected electromagnetic characteristics and responses. (3) The fusion of multiple neural networks demonstrates high flexibility, allowing for the adjustment of network structures and training methods based on specific design requirements and data characteristics, thus better accommodating different design problems and optimization objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
害怕导师的小可怜完成签到,获得积分10
43秒前
46秒前
饱满的亦旋完成签到,获得积分10
59秒前
1分钟前
ding应助饱满的亦旋采纳,获得10
1分钟前
深情安青应助liuwenjie采纳,获得10
1分钟前
烟花应助keroroleung采纳,获得10
1分钟前
1分钟前
1分钟前
上善若火完成签到 ,获得积分10
1分钟前
yanghh发布了新的文献求助30
1分钟前
2分钟前
知更鸟发布了新的文献求助10
2分钟前
2分钟前
2分钟前
吃了吃了完成签到,获得积分10
2分钟前
lulu给lulu的求助进行了留言
2分钟前
香蕉觅云应助刘春艳采纳,获得10
2分钟前
2分钟前
斯寜完成签到,获得积分0
2分钟前
2分钟前
完美世界应助闪闪的夏之采纳,获得10
2分钟前
rofsc完成签到 ,获得积分10
3分钟前
Jemma完成签到 ,获得积分10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
CipherSage应助dogontree采纳,获得10
3分钟前
3分钟前
dogontree发布了新的文献求助10
3分钟前
yyds完成签到,获得积分0
4分钟前
4分钟前
Xx完成签到,获得积分10
4分钟前
Xx发布了新的文献求助10
4分钟前
李健的小迷弟应助Xx采纳,获得10
4分钟前
无花果应助Sephirex采纳,获得10
4分钟前
4分钟前
多多发布了新的文献求助10
4分钟前
小马甲应助多多采纳,获得10
5分钟前
5分钟前
852应助魔幻的雨灵采纳,获得10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3763564
求助须知:如何正确求助?哪些是违规求助? 3308095
关于积分的说明 10142677
捐赠科研通 3023199
什么是DOI,文献DOI怎么找? 1659436
邀请新用户注册赠送积分活动 792698
科研通“疑难数据库(出版商)”最低求助积分说明 755074