On-Demand Design of Metasurfaces through Multineural Network Fusion

自编码 计算机科学 光谱图 潜变量 变量(数学) 人工神经网络 生成模型 算法 人工智能 模式识别(心理学) 生成语法 数学 数学分析
作者
Junwei Li,Chengfu yang,A Qinhua,Qiusong Lan,Lijun Yun,Yuelong Xia
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (37): 49673-49686
标识
DOI:10.1021/acsami.4c11972
摘要

In this paper, a multineural network fusion freestyle metasurface on-demand design method is proposed. The on-demand design method involves rapidly generating corresponding metasurface patterns based on the user-defined spectrum. The generated patterns are then input into a simulator to predict their corresponding S-parameter spectrogram, which is subsequently analyzed against the real S-parameter spectrogram to verify whether the generated metasurface patterns meet the desired requirements. The methodology is based on three neural network models: a Wasserstein Generative Adversarial Network model with a U-net architecture (U-WGAN) for inverse structural design, a Variational Autoencoder (VAE) model for compression, and an LSTM + Attention model for forward S-parameter spectrum prediction validation. The U-WGAN is utilized for on-demand reverse structural design, aiming to rapidly discover high-fidelity metasurface patterns that meet specific electromagnetic spectrum responses. The VAE, as a probabilistic generation model, serves as a bridge, mapping input data to latent space and transforming it into latent variable data, providing crucial input for a forward S-parameter spectrum prediction model. The LSTM + Attention network, acting as a forward S-parameter spectrum prediction model, can accurately and efficiently predict the S-parameter spectrum corresponding to the latent variable data and compare it with the real spectrum. In addition, the digits "0" and "1" are used in the design to represent vacuum and metallic materials, respectively, and a 10 × 10 cell array of freestyle metasurface patterns is constructed. The significance of the research method proposed in this paper lies in the following: (1) The freestyle metasurface design significantly expands the possibility of metamaterial design, enabling the creation of diverse metasurface structures that are difficult to achieve with traditional methods. (2) The on-demand design approach can generate high-fidelity metasurface patterns that meet the expected electromagnetic characteristics and responses. (3) The fusion of multiple neural networks demonstrates high flexibility, allowing for the adjustment of network structures and training methods based on specific design requirements and data characteristics, thus better accommodating different design problems and optimization objectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hina完成签到,获得积分10
刚刚
1秒前
3秒前
Fairy完成签到,获得积分10
4秒前
林林林发布了新的文献求助10
5秒前
lihang完成签到 ,获得积分10
5秒前
6秒前
james完成签到,获得积分10
8秒前
hh发布了新的文献求助10
9秒前
墨翎发布了新的文献求助30
9秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
9秒前
SciGPT应助TT采纳,获得10
11秒前
科目三应助罖亽采纳,获得10
11秒前
今后应助devil采纳,获得10
12秒前
IP41320完成签到,获得积分20
12秒前
hh完成签到,获得积分10
13秒前
AI完成签到 ,获得积分10
14秒前
15秒前
微风轻起发布了新的文献求助10
16秒前
16秒前
zsyzxb发布了新的文献求助10
17秒前
老鱼吹浪完成签到 ,获得积分10
17秒前
21秒前
22秒前
复杂煎饼完成签到,获得积分10
23秒前
23秒前
科研通AI5应助忆韵采纳,获得10
24秒前
罖亽发布了新的文献求助10
25秒前
orixero应助三顿饭吃一天采纳,获得10
27秒前
28秒前
临在完成签到,获得积分10
28秒前
28秒前
wu关闭了wu文献求助
29秒前
youyuguang完成签到,获得积分10
29秒前
30秒前
由哎完成签到,获得积分10
30秒前
小庄应助复杂煎饼采纳,获得10
31秒前
科研通AI5应助科研小白菜采纳,获得10
32秒前
迷路以筠发布了新的文献求助10
32秒前
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849