UTSRMorph: A Unified Transformer and Superresolution Network for Unsupervised Medical Image Registration

图像配准 人工智能 超分辨率 计算机视觉 计算机科学 医学影像学 变压器 图像分辨率 迭代重建 图像(数学) 模式识别(心理学) 工程类 电压 电气工程
作者
Runshi Zhang,Hao Mo,Junchen Wang,Bin B. Jie,Yang He,Nenghao Jin,Liang Zhu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2024.3467919
摘要

Complicated image registration is a key issue in medical image analysis, and deep learning-based methods have achieved better results than traditional methods. The methods include ConvNet-based and Transformer-based methods. Although ConvNets can effectively utilize local information to reduce redundancy via small neighborhood convolution, the limited receptive field results in the inability to capture global dependencies. Transformers can establish long-distance dependencies via a self-attention mechanism; however, the intense calculation of the relationships among all tokens leads to high redundancy. We propose a novel unsupervised image registration method named the unified Transformer and superresolution (UTSRMorph) network, which can enhance feature representation learning in the encoder and generate detailed displacement fields in the decoder to overcome these problems. We first propose a fusion attention block to integrate the advantages of ConvNets and Transformers, which inserts a ConvNet-based channel attention module into a multihead self-attention module. The overlapping attention block, a novel cross-attention method, uses overlapping windows to obtain abundant correlations with match information of a pair of images. Then, the blocks are flexibly stacked into a new powerful encoder. The decoder generation process of a high-resolution deformation displacement field from low-resolution features is considered as a superresolution process. Specifically, the superresolution module was employed to replace interpolation upsampling, which can overcome feature degradation. UTSRMorph was compared to state-of-the-art registration methods in the 3D brain MR (OASIS, IXI) and MR-CT datasets (abdomen, craniomaxillofacial). The qualitative and quantitative results indicate that UTSRMorph achieves relatively better performance. The code and datasets used are publicly available at https://github.com/Runshi-Zhang/UTSRMorph.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ruuko发布了新的文献求助10
刚刚
hjy发布了新的文献求助10
1秒前
南昌黑人发布了新的文献求助10
1秒前
maox1aoxin应助孤独饼干采纳,获得30
2秒前
yjy000222发布了新的文献求助10
2秒前
YZL发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
李明发布了新的文献求助10
4秒前
少年发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
yyauthor发布了新的文献求助10
6秒前
song完成签到,获得积分20
7秒前
GankhuyagJavzan完成签到,获得积分10
7秒前
lm完成签到,获得积分10
8秒前
yile发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
Singularity应助酷炫雅青采纳,获得10
11秒前
leozhe发布了新的文献求助10
11秒前
11秒前
11秒前
陈1992完成签到 ,获得积分10
14秒前
15秒前
但愿完成签到 ,获得积分10
15秒前
一只桃完成签到,获得积分10
15秒前
殊途发布了新的文献求助10
16秒前
困困困完成签到 ,获得积分10
16秒前
共享精神应助Ruuko采纳,获得10
16秒前
wenbwenbo发布了新的文献求助30
17秒前
17秒前
19秒前
19秒前
ben1702完成签到,获得积分10
19秒前
19秒前
研友_VZG7GZ应助liulei采纳,获得10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153113
求助须知:如何正确求助?哪些是违规求助? 2804274
关于积分的说明 7858206
捐赠科研通 2462058
什么是DOI,文献DOI怎么找? 1310639
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794