A dual-modality complex-valued fusion method for predicting side effects of drug-drug interactions based on graph neural network

计算机科学 药品 人工神经网络 人工智能 对偶(语法数字) 模态(人机交互) 图形 图论 机器学习 模式识别(心理学) 理论计算机科学 医学 数学 药理学 组合数学 文学类 艺术
作者
Chuanze Kang,Han Zhang,Yanbin Yin
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/jbhi.2024.3422673
摘要

Predicting potential side effects of drug-drug interactions (DDIs), which is a major concern in clinical treatment, can increase therapeutic efficacy. In recent studies, how to use the multi-modal drug features is important for DDI prediction. Thus, it remains a challenge to explore an efficient computational method to achieve the feature fusion cross- and intra-modality. In this paper, we propose a dual-modality complex-valued fusion method (DMCF-DDI) for predicting the side effects of DDIs, using the form and properties of complex-vector to enhance the representations of DDIs. Firstly, DMCF-DDI applies two Graph Convolutional Network (GCN) encoders to learn molecular structure and topological features from fingerprint and knowledge graphs, respectively. Secondly, an asymmetric skip connection (ASC) uses distinct semantic-level features to construct the complex-valued drug pair representations (DPRs). Then, the complex-vector multiplication is used as a fusion operator to obtain the fine-grained DPRs. Finally, we calculate the prediction probability of DDIs by Hermitian inner product in the complex space. Compared with other methods, DMCF-DDI achieves superior performance in all situations using a fusion operator with the lowest parameter numbers. For the case study, we select six diseases and common side effects in clinical treatment to verify identification ability of our model. We also prove the advantage of ASC and complex-valued fusion can achieve to align the cross-modal fused positive DPRs through a comprehensive analysis on the phase-modulus distribution histogram of DPRs. In the end, we explain the reason for alignment based on the similarity of features and node neighbors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的白凝完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
2秒前
qphys完成签到,获得积分10
3秒前
hyf发布了新的文献求助10
3秒前
mjf111完成签到,获得积分10
6秒前
7秒前
wsj发布了新的文献求助10
7秒前
烟酒不离生完成签到,获得积分10
8秒前
9秒前
Jasper应助xyj6486采纳,获得10
10秒前
10秒前
12秒前
于平川春野完成签到 ,获得积分10
12秒前
汉堡包应助我不吃胡萝卜采纳,获得10
14秒前
14秒前
英姑应助潇湘雪月采纳,获得10
14秒前
Xw发布了新的文献求助10
14秒前
15秒前
种花家的狗狗完成签到,获得积分10
15秒前
wanci应助wsj采纳,获得10
17秒前
李昕123完成签到 ,获得积分10
18秒前
超帅青烟发布了新的文献求助10
18秒前
友好的睫毛完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
20秒前
木皆完成签到,获得积分10
22秒前
24秒前
ChatGPT发布了新的文献求助10
25秒前
王炎完成签到 ,获得积分10
26秒前
李健的小迷弟应助星星采纳,获得10
26秒前
29秒前
31秒前
32秒前
爱笑晓曼发布了新的文献求助20
35秒前
老大蒂亚戈应助YJ888采纳,获得10
36秒前
JamesPei应助潇湘雪月采纳,获得10
36秒前
bbczj发布了新的文献求助10
38秒前
39秒前
40秒前
南风知我意完成签到,获得积分20
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174