Model-based deep reinforcement learning for active control of flow around a circular cylinder using action-informed episode-based neural ordinary differential equations

物理 动作(物理) 圆柱 人工神经网络 流量(数学) 常微分方程 微分方程 强化学习 应用数学 人工智能 机械 数学分析 几何学 计算机科学 数学 量子力学
作者
Yiqian Mao,Shan Zhong,Hujun Yin
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8)
标识
DOI:10.1063/5.0220129
摘要

To date, applications of deep reinforcement learning (DRL) to active flow control (AFC) have been largely achieved via model-free DRL wherein the agent's policy is optimized through direct interactions with the actual physical system represented by computational fluid dynamics solvers. However, high computational demands and tendency of numerical divergence can significantly compromise the effectiveness of model-free DRL as the Reynolds number increases. A model-based DRL paradigm, which utilizes neural ordinary differential equations (NODE) to develop an environment model through integration with dimensionality reduction, offers a promising way forward to overcome this problem. This study presents an inaugural application of NODE model-based DRL to control the vortex shedding process from a two-dimensional circular cylinder using two synthetic jet actuators at a freestream Reynolds number of 100. An action-informed episode-based NODE (AENODE) method is developed to overcome the error cascading effect caused by recursive predictions in the existing studies, which typically adopt a single-step prediction NODE (denoted as the time step-based NODE (TNODE) in this paper). Both the AENODE and TNODE methods are employed in this study, and they are amalgamated with three distinct feature extraction approaches, expert-placed velocity sensors, proper orthogonal decomposition, and autoencoders, to construct six low-dimensional dynamical models (LDMs) of the DRL environment. It is found that AENODE resulted in over 90% fewer prediction errors at the end of an episode than TNODE with all LDMs via effectively mitigating the accumulation of long-term prediction errors associated with the recursive use of TNODE, leading to a more robust convergence in training the agents throughout repeated runs. Furthermore, the model-based DRL with either AENODE or TNODE is capable of identifying very similar control strategies to that obtained by the model-free DRL. The AENODE agents achieved 66.2%–72.4% of the rewards obtained by the model-free DRL, whereas the TNODE agents attained merely 43.4%–54.7%, indicating that AENODE provides a more accurate modeling of environment dynamics in DRL. It is also shown that completing a model-based DRL task using either TNODE or AENODE utilized only 10% of the data size requiring either 14% or 33% of the total wall-clock time required by the model-free DRL, and the actual time required for training the agents within the environment model was less than 1% of that required by the model-free DRL. Therefore, the AENODE method developed in this work not only enables a significant saving in computational costs but also outperforms the TNODE method in training convergence and reward. It represents a novel low-dimensional dynamical modeling method tailored for model-based DRL, which would enable the DRL-aided AFC to be applied to more complex flow scenarios occurring at high Reynolds numbers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李西瓜发布了新的文献求助10
1秒前
liukuangxu发布了新的文献求助10
1秒前
Akim应助霏冉采纳,获得10
1秒前
anna1992发布了新的文献求助10
2秒前
王稀松完成签到,获得积分10
2秒前
1213发布了新的文献求助10
3秒前
law驳回了田様应助
3秒前
4秒前
个性的紫菜应助Wells采纳,获得10
4秒前
爆米花应助冯豆豆要发SCI采纳,获得30
4秒前
嘀嘀咕咕发布了新的文献求助10
4秒前
YQ发布了新的文献求助10
5秒前
奥格诺发布了新的文献求助10
6秒前
负责人生完成签到,获得积分20
6秒前
xx完成签到,获得积分10
6秒前
drjj发布了新的文献求助10
7秒前
郑牛牛发布了新的文献求助20
7秒前
ding应助苹果采纳,获得10
7秒前
撒旦撒完成签到,获得积分10
7秒前
XT666完成签到,获得积分10
9秒前
9秒前
汉堡包应助饱满的凡儿采纳,获得10
9秒前
月夕完成签到 ,获得积分10
9秒前
彭于晏应助莫言采纳,获得10
10秒前
万能图书馆应助zhegewa采纳,获得10
10秒前
坚强亦丝应助呆萌滑板采纳,获得10
10秒前
11秒前
田様应助完美芹采纳,获得10
11秒前
1213完成签到,获得积分10
11秒前
樱桃小贩完成签到,获得积分10
12秒前
13秒前
上官若男应助lemonlmm采纳,获得30
13秒前
神勇中道完成签到,获得积分10
13秒前
隐形的冰海完成签到,获得积分20
14秒前
石幼蓉发布了新的文献求助10
14秒前
迷路海蓝应助春夏秋冬采纳,获得10
14秒前
bkagyin应助春夏秋冬采纳,获得10
14秒前
田様应助大胆妖孽采纳,获得10
14秒前
15秒前
zt完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143314
求助须知:如何正确求助?哪些是违规求助? 2794476
关于积分的说明 7811257
捐赠科研通 2450676
什么是DOI,文献DOI怎么找? 1303944
科研通“疑难数据库(出版商)”最低求助积分说明 627160
版权声明 601386