Electric vehicle eco-driving strategy at signalized intersections based on optimal energy consumption

能源消耗 运输工程 电动汽车 消费(社会学) 汽车工程 环境科学 工程类 社会科学 功率(物理) 物理 量子力学 社会学 电气工程
作者
Teh Jayson,A. S. M. Bakibillah,Chee Pin Tan,Md Abdus Samad Kamal,Vishnu Monn,Jun‐ichi Imura
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:368: 122245-122245 被引量:1
标识
DOI:10.1016/j.jenvman.2024.122245
摘要

Electric vehicles (EVs), which are a great substitute for gasoline-powered vehicles, have the potential to achieve the goal of reducing energy consumption and emissions. However, the energy consumption of an EV is highly dependent on road contexts and driving behavior, especially at urban intersections. This paper proposes a novel ecological (eco) driving strategy (EDS) for EVs based on optimal energy consumption at an urban signalized intersection under moderate and dense traffic conditions. Firstly, we develop an energy consumption model for EVs considering several crucial factors such as road grade, curvature, rolling resistance, friction in bearing, aerodynamics resistance, motor ohmic loss, and regenerative braking. For better energy recovery at varying traffic speeds, we employ a sigmoid function to calculate the regenerative braking efficiency rather than a simple constant or linear function considered by many other studies. Secondly, we formulate an eco-driving optimal control problem subject to state constraints that minimize the energy consumption of EVs by finding a closed-form solution for acceleration/deceleration of vehicles over a time and distance horizon using Pontryagin's minimum principle (PMP). Finally, we evaluate the efficacy of the proposed EDS using microscopic traffic simulations considering real traffic flow behavior at an urban signalized intersection and compare its performance to the (human-based) traditional driving strategy (TDS). The results demonstrate significant performance improvement in energy efficiency and waiting time for various traffic demands while ensuring driving safety and riding comfort. Our proposed strategy has a low computing cost and can be used as an advanced driver-assistance system (ADAS) in real-time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黎是叻熠黎完成签到,获得积分10
1秒前
每天必补一科完成签到,获得积分10
1秒前
花生完成签到,获得积分10
2秒前
mufcyang完成签到,获得积分10
2秒前
3秒前
缪缪发布了新的文献求助10
4秒前
4秒前
风清扬发布了新的文献求助10
5秒前
甜美乘云完成签到,获得积分10
6秒前
万能图书馆应助嘿嘿采纳,获得10
6秒前
8秒前
8秒前
xuxin完成签到 ,获得积分10
9秒前
大模型应助温柔柜子采纳,获得10
9秒前
啦啦啦完成签到,获得积分10
9秒前
易点邦发布了新的文献求助10
10秒前
10秒前
yyymmm完成签到,获得积分10
12秒前
Anna完成签到 ,获得积分10
13秒前
14秒前
15秒前
15秒前
15秒前
15秒前
小西完成签到 ,获得积分0
15秒前
科目三应助黄超采纳,获得10
15秒前
16秒前
16秒前
17秒前
情怀应助YANYAN采纳,获得10
18秒前
嘿嘿发布了新的文献求助10
19秒前
锅锅发布了新的文献求助10
19秒前
充电宝应助是墩墩呀采纳,获得10
21秒前
23秒前
风清扬发布了新的文献求助10
23秒前
23秒前
晴朗发布了新的文献求助10
23秒前
24秒前
温柔柜子发布了新的文献求助10
26秒前
LOST完成签到 ,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714