Electric vehicle eco-driving strategy at signalized intersections based on optimal energy consumption

能源消耗 运输工程 电动汽车 消费(社会学) 汽车工程 环境科学 工程类 社会科学 量子力学 电气工程 物理 社会学 功率(物理)
作者
Teh Jayson,A. S. M. Bakibillah,Chee Pin Tan,Md Abdus Samad Kamal,Vishnu Monn,Jun‐ichi Imura
出处
期刊:Journal of Environmental Management [Elsevier]
卷期号:368: 122245-122245 被引量:1
标识
DOI:10.1016/j.jenvman.2024.122245
摘要

Electric vehicles (EVs), which are a great substitute for gasoline-powered vehicles, have the potential to achieve the goal of reducing energy consumption and emissions. However, the energy consumption of an EV is highly dependent on road contexts and driving behavior, especially at urban intersections. This paper proposes a novel ecological (eco) driving strategy (EDS) for EVs based on optimal energy consumption at an urban signalized intersection under moderate and dense traffic conditions. Firstly, we develop an energy consumption model for EVs considering several crucial factors such as road grade, curvature, rolling resistance, friction in bearing, aerodynamics resistance, motor ohmic loss, and regenerative braking. For better energy recovery at varying traffic speeds, we employ a sigmoid function to calculate the regenerative braking efficiency rather than a simple constant or linear function considered by many other studies. Secondly, we formulate an eco-driving optimal control problem subject to state constraints that minimize the energy consumption of EVs by finding a closed-form solution for acceleration/deceleration of vehicles over a time and distance horizon using Pontryagin's minimum principle (PMP). Finally, we evaluate the efficacy of the proposed EDS using microscopic traffic simulations considering real traffic flow behavior at an urban signalized intersection and compare its performance to the (human-based) traditional driving strategy (TDS). The results demonstrate significant performance improvement in energy efficiency and waiting time for various traffic demands while ensuring driving safety and riding comfort. Our proposed strategy has a low computing cost and can be used as an advanced driver-assistance system (ADAS) in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
香蕉觅云应助zfzf0422采纳,获得10
1秒前
2秒前
2秒前
李健应助爱听歌的向日葵采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得80
3秒前
所所应助科研通管家采纳,获得20
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
Owen应助科研通管家采纳,获得30
4秒前
婷婷发布了新的文献求助10
4秒前
zzt完成签到,获得积分10
6秒前
张小汉发布了新的文献求助30
7秒前
二十四发布了新的文献求助10
7秒前
赘婿应助junzilan采纳,获得10
7秒前
FashionBoy应助勤恳的雨文采纳,获得10
7秒前
aaa完成签到,获得积分10
8秒前
9秒前
11111完成签到,获得积分20
10秒前
仔wang完成签到,获得积分10
10秒前
12秒前
忘羡222发布了新的文献求助20
12秒前
12秒前
温暖涫完成签到,获得积分10
14秒前
11111发布了新的文献求助10
14秒前
健忘的牛排完成签到,获得积分10
15秒前
wmmm完成签到,获得积分10
15秒前
Akim应助爱吃泡芙采纳,获得10
15秒前
老迟到的书雁完成签到 ,获得积分10
15秒前
15秒前
正经俠发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824