Electric vehicle eco-driving strategy at signalized intersections based on optimal energy consumption

能源消耗 运输工程 电动汽车 消费(社会学) 汽车工程 环境科学 工程类 社会科学 量子力学 电气工程 物理 社会学 功率(物理)
作者
Teh Jayson,A. S. M. Bakibillah,Chee Pin Tan,Md Abdus Samad Kamal,Vishnu Monn,Jun‐ichi Imura
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:368: 122245-122245 被引量:1
标识
DOI:10.1016/j.jenvman.2024.122245
摘要

Electric vehicles (EVs), which are a great substitute for gasoline-powered vehicles, have the potential to achieve the goal of reducing energy consumption and emissions. However, the energy consumption of an EV is highly dependent on road contexts and driving behavior, especially at urban intersections. This paper proposes a novel ecological (eco) driving strategy (EDS) for EVs based on optimal energy consumption at an urban signalized intersection under moderate and dense traffic conditions. Firstly, we develop an energy consumption model for EVs considering several crucial factors such as road grade, curvature, rolling resistance, friction in bearing, aerodynamics resistance, motor ohmic loss, and regenerative braking. For better energy recovery at varying traffic speeds, we employ a sigmoid function to calculate the regenerative braking efficiency rather than a simple constant or linear function considered by many other studies. Secondly, we formulate an eco-driving optimal control problem subject to state constraints that minimize the energy consumption of EVs by finding a closed-form solution for acceleration/deceleration of vehicles over a time and distance horizon using Pontryagin's minimum principle (PMP). Finally, we evaluate the efficacy of the proposed EDS using microscopic traffic simulations considering real traffic flow behavior at an urban signalized intersection and compare its performance to the (human-based) traditional driving strategy (TDS). The results demonstrate significant performance improvement in energy efficiency and waiting time for various traffic demands while ensuring driving safety and riding comfort. Our proposed strategy has a low computing cost and can be used as an advanced driver-assistance system (ADAS) in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助paradeYH采纳,获得10
2秒前
2秒前
xun发布了新的文献求助100
2秒前
大模型应助斯文明杰采纳,获得10
3秒前
4秒前
WJane完成签到,获得积分10
4秒前
张张发布了新的文献求助10
5秒前
5秒前
5秒前
心心完成签到,获得积分10
6秒前
沉默傲芙完成签到,获得积分0
6秒前
7秒前
7秒前
楠楠发布了新的文献求助10
7秒前
apollo3232完成签到,获得积分0
8秒前
罗先生完成签到,获得积分10
10秒前
坤坤蹦蹦跳跳完成签到,获得积分10
10秒前
uil发布了新的文献求助10
11秒前
善学以致用应助兮颜采纳,获得10
12秒前
灵泽发布了新的文献求助10
12秒前
夏雪儿发布了新的文献求助10
13秒前
15秒前
执着的秋柳完成签到,获得积分20
16秒前
17秒前
Mess完成签到,获得积分10
17秒前
楠楠完成签到,获得积分10
18秒前
狂野静曼发布了新的文献求助10
18秒前
111发布了新的文献求助10
19秒前
Dado完成签到,获得积分10
20秒前
20秒前
可靠三问完成签到 ,获得积分10
21秒前
尊敬莫茗完成签到,获得积分10
23秒前
24秒前
科研通AI6应助陈道哥采纳,获得10
25秒前
25秒前
兮颜发布了新的文献求助10
25秒前
25秒前
惠惠完成签到 ,获得积分20
28秒前
111清发布了新的文献求助10
29秒前
完美世界应助迷人绿蕊采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994