Electric vehicle eco-driving strategy at signalized intersections based on optimal energy consumption

能源消耗 运输工程 电动汽车 消费(社会学) 汽车工程 环境科学 工程类 社会科学 功率(物理) 物理 量子力学 社会学 电气工程
作者
Teh Jayson,A. S. M. Bakibillah,Chee Pin Tan,Md Abdus Samad Kamal,Vishnu Monn,Jun‐ichi Imura
出处
期刊:Journal of Environmental Management [Elsevier BV]
卷期号:368: 122245-122245 被引量:1
标识
DOI:10.1016/j.jenvman.2024.122245
摘要

Electric vehicles (EVs), which are a great substitute for gasoline-powered vehicles, have the potential to achieve the goal of reducing energy consumption and emissions. However, the energy consumption of an EV is highly dependent on road contexts and driving behavior, especially at urban intersections. This paper proposes a novel ecological (eco) driving strategy (EDS) for EVs based on optimal energy consumption at an urban signalized intersection under moderate and dense traffic conditions. Firstly, we develop an energy consumption model for EVs considering several crucial factors such as road grade, curvature, rolling resistance, friction in bearing, aerodynamics resistance, motor ohmic loss, and regenerative braking. For better energy recovery at varying traffic speeds, we employ a sigmoid function to calculate the regenerative braking efficiency rather than a simple constant or linear function considered by many other studies. Secondly, we formulate an eco-driving optimal control problem subject to state constraints that minimize the energy consumption of EVs by finding a closed-form solution for acceleration/deceleration of vehicles over a time and distance horizon using Pontryagin's minimum principle (PMP). Finally, we evaluate the efficacy of the proposed EDS using microscopic traffic simulations considering real traffic flow behavior at an urban signalized intersection and compare its performance to the (human-based) traditional driving strategy (TDS). The results demonstrate significant performance improvement in energy efficiency and waiting time for various traffic demands while ensuring driving safety and riding comfort. Our proposed strategy has a low computing cost and can be used as an advanced driver-assistance system (ADAS) in real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心态发布了新的文献求助10
刚刚
苏翰英发布了新的文献求助10
刚刚
安详沛萍完成签到 ,获得积分10
刚刚
英勇靖雁完成签到,获得积分20
刚刚
ZZ发布了新的文献求助200
1秒前
罗大海完成签到,获得积分10
1秒前
2秒前
3秒前
开朗寇发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助150
4秒前
4秒前
4秒前
无花果应助大秋哥哈拉少采纳,获得10
6秒前
7秒前
顾矜应助阔达白竹采纳,获得10
8秒前
鳗鱼鸽子完成签到,获得积分10
9秒前
9秒前
9秒前
Xu发布了新的文献求助10
9秒前
10秒前
11秒前
11秒前
唐浩星完成签到,获得积分10
11秒前
房靳完成签到,获得积分10
12秒前
12秒前
魏一刀发布了新的文献求助10
12秒前
张舒雯关注了科研通微信公众号
12秒前
慧慧吴发布了新的文献求助30
13秒前
13秒前
Hbobo发布了新的文献求助10
13秒前
znq051210发布了新的文献求助10
13秒前
iNk应助Xu采纳,获得10
14秒前
英俊的铭应助Xu采纳,获得10
14秒前
大模型应助Poisomber采纳,获得10
14秒前
15秒前
安生发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
PetrichorF完成签到 ,获得积分10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131642
求助须知:如何正确求助?哪些是违规求助? 4333372
关于积分的说明 13500477
捐赠科研通 4170310
什么是DOI,文献DOI怎么找? 2286231
邀请新用户注册赠送积分活动 1287130
关于科研通互助平台的介绍 1228164