Biodegradable Polymer Electrospinning for Tendon Repairment

肌腱 静电纺丝 脚手架 再生(生物学) 材料科学 组织工程 生物相容性 生物医学工程 可生物降解聚合物 聚合物 外科 医学 复合材料 生物 细胞生物学 冶金
作者
Yiming Zhang,Yueguang Xue,Yan Ren,Xin Li,Ying Liu
出处
期刊:Polymers [MDPI AG]
卷期号:15 (6): 1566-1566 被引量:9
标识
DOI:10.3390/polym15061566
摘要

With the degradation after aging and the destruction of high-intensity exercise, the frequency of tendon injury is also increasing, which will lead to serious pain and disability. Due to the structural specificity of the tendon tissue, the traditional treatment of tendon injury repair has certain limitations. Biodegradable polymer electrospinning technology with good biocompatibility and degradability can effectively repair tendons, and its mechanical properties can be achieved by adjusting the fiber diameter and fiber spacing. Here, this review first briefly introduces the structure and function of the tendon and the repair process after injury. Then, different kinds of biodegradable natural polymers for tendon repair are summarized. Then, the advantages and disadvantages of three-dimensional (3D) electrospun products in tendon repair and regeneration are summarized, as well as the optimization of electrospun fiber scaffolds with different bioactive materials and the latest application in tendon regeneration engineering. Bioactive molecules can optimize the structure of these products and improve their repair performance. Importantly, we discuss the application of the 3D electrospinning scaffold’s superior structure in different stages of tendon repair. Meanwhile, the combination of other advanced technologies has greater potential in tendon repair. Finally, the relevant patents of biodegradable electrospun scaffolds for repairing damaged tendons, as well as their clinical applications, problems in current development, and future directions are summarized. In general, the use of biodegradable electrospun fibers for tendon repair is a promising and exciting research field, but further research is needed to fully understand its potential and optimize its application in tissue engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大家不要笑好吗完成签到,获得积分10
刚刚
刚刚
yangyu完成签到,获得积分10
刚刚
Leif应助哈哈哈采纳,获得20
1秒前
2秒前
QQ发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
喜悦的唇彩完成签到,获得积分10
3秒前
3秒前
liyuxuan发布了新的文献求助10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
丰知然应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
丰知然应助科研通管家采纳,获得10
5秒前
SciGPT应助星移采纳,获得10
5秒前
WC241002292完成签到,获得积分10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
萧水白应助科研通管家采纳,获得10
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
Zhengyiwu发布了新的文献求助10
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
yangya应助失眠傲白采纳,获得10
6秒前
ZZZ完成签到,获得积分10
6秒前
小鱼儿完成签到,获得积分10
6秒前
李瑁瑁发布了新的文献求助10
7秒前
医学科研女民工_喵喵完成签到,获得积分10
7秒前
S杨发布了新的文献求助10
7秒前
seven应助迷路的糜采纳,获得10
7秒前
彭于晏应助喜悦的唇彩采纳,获得10
7秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397