亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer

医学 结直肠癌 深度学习 阶段(地层学) 人口 癌症 生物标志物 转移 疾病 人工智能 淋巴结 肿瘤科 内科学 病理 计算机科学 环境卫生 生物 古生物学 化学 生物化学
作者
Scarlet Brockmoeller,Amelie Echle,Narmin Ghaffari Laleh,Susanne Eiholm,Marie Louise Malmstrøm,Tine Plato Kühlmann,Katarina Levic,Heike I. Grabsch,Nicholas P. West,Oliver Lester Saldanha,Katerina Kouvidi,Aurora Bono,Lara R. Heij,Titus J. Brinker,Ismaïl Gögenur,Philip Quirke,Jakob Nikolas Kather
标识
DOI:10.1002/path.5831
摘要

Abstract The spread of early‐stage (T1 and T2) adenocarcinomas to locoregional lymph nodes is a key event in disease progression of colorectal cancer (CRC). The cellular mechanisms behind this event are not completely understood and existing predictive biomarkers are imperfect. Here, we used an end‐to‐end deep learning algorithm to identify risk factors for lymph node metastasis (LNM) status in digitized histopathology slides of the primary CRC and its surrounding tissue. In two large population‐based cohorts, we show that this system can predict the presence of more than one LNM in pT2 CRC patients with an area under the receiver operating curve (AUROC) of 0.733 (0.67–0.758) and patients with any LNM with an AUROC of 0.711 (0.597–0.797). Similarly, in pT1 CRC patients, the presence of more than one LNM or any LNM was predictable with an AUROC of 0.733 (0.644–0.778) and 0.567 (0.542–0.597), respectively. Based on these findings, we used the deep learning system to guide human pathology experts towards highly predictive regions for LNM in the whole slide images. This hybrid human observer and deep learning approach identified inflamed adipose tissue as the highest predictive feature for LNM presence. Our study is a first proof of concept that artificial intelligence (AI) systems may be able to discover potentially new biological mechanisms in cancer progression. Our deep learning algorithm is publicly available and can be used for biomarker discovery in any disease setting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助科研通管家采纳,获得150
4秒前
烟花应助科研通管家采纳,获得10
4秒前
yys10l完成签到,获得积分10
7秒前
yys完成签到,获得积分10
20秒前
39秒前
白云发布了新的文献求助10
43秒前
47秒前
Nicole发布了新的文献求助10
51秒前
悦耳冬萱完成签到 ,获得积分10
1分钟前
彩虹儿应助af采纳,获得10
1分钟前
HRB完成签到 ,获得积分10
1分钟前
Adi完成签到,获得积分10
2分钟前
3分钟前
af完成签到,获得积分10
3分钟前
11发布了新的文献求助10
3分钟前
所所应助weinaonao采纳,获得10
4分钟前
zsmj23完成签到 ,获得积分0
5分钟前
海风奕婕完成签到,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
小蘑菇应助科研通管家采纳,获得10
6分钟前
6分钟前
weinaonao发布了新的文献求助10
6分钟前
6分钟前
11完成签到,获得积分10
6分钟前
11发布了新的文献求助10
6分钟前
充电宝应助weinaonao采纳,获得10
6分钟前
7分钟前
孙国扬发布了新的文献求助10
7分钟前
11完成签到 ,获得积分10
7分钟前
hugeyoung完成签到,获得积分10
8分钟前
8分钟前
李健应助yukky采纳,获得30
8分钟前
白云完成签到,获得积分10
8分钟前
白云发布了新的文献求助10
9分钟前
9分钟前
yukky发布了新的文献求助30
9分钟前
9分钟前
weinaonao发布了新的文献求助10
9分钟前
weinaonao完成签到,获得积分10
9分钟前
慕青应助科研通管家采纳,获得10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926702
求助须知:如何正确求助?哪些是违规求助? 4196320
关于积分的说明 13032388
捐赠科研通 3968553
什么是DOI,文献DOI怎么找? 2175046
邀请新用户注册赠送积分活动 1192206
关于科研通互助平台的介绍 1102505