Classification of power quality disturbances using visual attention mechanism and feed-forward neural network

计算机科学 电力系统 人工神经网络 故障排除 人工智能 电能质量 功率(物理) 工程类 可靠性工程 控制理论(社会学) 电压 控制(管理) 电气工程 量子力学 物理
作者
Yuwei Zhang,Yin Zhang,Xiaohua Zhou
出处
期刊:Measurement [Elsevier]
卷期号:188: 110390-110390 被引量:45
标识
DOI:10.1016/j.measurement.2021.110390
摘要

The power quality disturbances caused by large-scale grid connection of nonlinear loads and distributed generations seriously affect the safe and stable operation of precision computers and microprocessors in the power grid, and may cause serious security accidents and economic losses in some cases. Therefore, the accurate classification of power quality disturbances is of great significance for the power supply quality improvement, the power equipment condition monitoring, and the troubleshooting of power grid. For this reason, a novel method based on visual attention mechanism and feed-forward neural network is proposed to classify single and combined power quality disturbances caused by non-balanced, nonlinear loads and distributed generations in the power grid. In the first step of the proposed method, visual attention mechanism is utilized to extract the disturbance features of power quality disturbances, through performing disturbance region selection, multi-scale spatial rarity analysis, and disturbance feature fusion on the binary image converted from the original voltage signal successively. Then, four disturbance feature indexes are selected for the characterization of power quality disturbances. Finally, a classifier using feed-forward neural network is constructed to distinguish various single and combined power quality disturbances. The classification accuracy of the proposed method is compared with that of several existing methods for the classification of power quality disturbances from two types of datasources. The power quality disturbances from the simulation operating conditions include eight kinds of single and thirty-eight kinds of combined power quality disturbances. The power quality disturbances from the IEEE Work Group P1159.3 and P1159.2 Datasets include seven kinds of single and eleven kinds of combined power quality disturbances. Comparison results demonstrate that the proposed method can classify single and combined power quality disturbances more accurate than the compared classification methods, which verifies the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
哎呀哎呀呀完成签到,获得积分10
1秒前
miao发布了新的文献求助20
1秒前
伯赏元彤完成签到,获得积分10
1秒前
小金今天自律了吗完成签到,获得积分10
1秒前
buyu发布了新的文献求助10
1秒前
彭于晏应助现代的无春采纳,获得10
2秒前
英吉利25发布了新的文献求助10
2秒前
lq完成签到,获得积分10
3秒前
3秒前
3秒前
炸鸡腿完成签到,获得积分10
3秒前
幽默身影发布了新的文献求助10
3秒前
3秒前
Shan发布了新的文献求助10
4秒前
若枫发布了新的文献求助10
4秒前
科研通AI6应助专注的枫叶采纳,获得10
4秒前
starlx0813完成签到 ,获得积分10
4秒前
仁爱的凡波完成签到,获得积分10
4秒前
曹晨完成签到,获得积分20
5秒前
5秒前
5秒前
BIANYAN完成签到,获得积分10
5秒前
多看文献发布了新的文献求助10
6秒前
当你完成签到,获得积分10
6秒前
不接组会完成签到 ,获得积分10
6秒前
共享精神应助秋qiu采纳,获得10
7秒前
科研醉汉完成签到,获得积分10
7秒前
聪明的从梦完成签到,获得积分10
7秒前
lifang完成签到,获得积分10
7秒前
平常破茧完成签到,获得积分10
8秒前
8秒前
8秒前
桂花酒酿完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
斯文败类应助Ysera采纳,获得10
9秒前
Spike完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005