Classification of power quality disturbances using visual attention mechanism and feed-forward neural network

计算机科学 电力系统 人工神经网络 故障排除 人工智能 电能质量 功率(物理) 工程类 可靠性工程 控制理论(社会学) 电压 控制(管理) 电气工程 量子力学 物理
作者
Yuwei Zhang,Yin Zhang,Xuelian Zhou
出处
期刊:Measurement [Elsevier BV]
卷期号:188: 110390-110390 被引量:26
标识
DOI:10.1016/j.measurement.2021.110390
摘要

The power quality disturbances caused by large-scale grid connection of nonlinear loads and distributed generations seriously affect the safe and stable operation of precision computers and microprocessors in the power grid, and may cause serious security accidents and economic losses in some cases. Therefore, the accurate classification of power quality disturbances is of great significance for the power supply quality improvement, the power equipment condition monitoring, and the troubleshooting of power grid. For this reason, a novel method based on visual attention mechanism and feed-forward neural network is proposed to classify single and combined power quality disturbances caused by non-balanced, nonlinear loads and distributed generations in the power grid. In the first step of the proposed method, visual attention mechanism is utilized to extract the disturbance features of power quality disturbances, through performing disturbance region selection, multi-scale spatial rarity analysis, and disturbance feature fusion on the binary image converted from the original voltage signal successively. Then, four disturbance feature indexes are selected for the characterization of power quality disturbances. Finally, a classifier using feed-forward neural network is constructed to distinguish various single and combined power quality disturbances. The classification accuracy of the proposed method is compared with that of several existing methods for the classification of power quality disturbances from two types of datasources. The power quality disturbances from the simulation operating conditions include eight kinds of single and thirty-eight kinds of combined power quality disturbances. The power quality disturbances from the IEEE Work Group P1159.3 and P1159.2 Datasets include seven kinds of single and eleven kinds of combined power quality disturbances. Comparison results demonstrate that the proposed method can classify single and combined power quality disturbances more accurate than the compared classification methods, which verifies the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
徐风年完成签到,获得积分10
刚刚
1秒前
潘多拉完成签到,获得积分10
1秒前
七个丸子发布了新的文献求助30
1秒前
慕青应助冯成风采纳,获得30
2秒前
2秒前
朱小燕发布了新的文献求助10
2秒前
MsFelinus发布了新的文献求助30
3秒前
小蛋糕完成签到 ,获得积分10
4秒前
四叶草发布了新的文献求助10
4秒前
YifanWang应助aaa福采纳,获得30
4秒前
专一的万怨完成签到,获得积分20
4秒前
4秒前
4秒前
金皓玄发布了新的文献求助10
4秒前
jiandie发布了新的文献求助10
5秒前
5秒前
酷酷珠完成签到,获得积分10
6秒前
6秒前
慕青应助RC_Wang采纳,获得10
6秒前
王小聪明发布了新的文献求助10
6秒前
7秒前
科研通AI2S应助zz采纳,获得10
7秒前
田様应助激情的念露采纳,获得10
7秒前
小蛋糕关注了科研通微信公众号
8秒前
8秒前
luo完成签到 ,获得积分10
8秒前
HDM完成签到,获得积分10
9秒前
yttttt完成签到,获得积分10
9秒前
北秋发布了新的文献求助10
9秒前
zoe完成签到,获得积分10
10秒前
10秒前
悦白发布了新的文献求助10
11秒前
zyl发布了新的文献求助20
11秒前
lvxsit发布了新的文献求助10
11秒前
11秒前
12秒前
NiLou发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798