激进的
化学
电子转移
氧气
光化学
降级(电信)
羟基自由基
金属
动力学
选择性
催化作用
有机化学
计算机科学
量子力学
电信
物理
作者
Jinxing Zhang,Zhaoyu Zhou,Zhiyuan Feng,Hongying Zhao,Guohua Zhao
标识
DOI:10.1021/acs.est.1c06368
摘要
A strategy for the fast generation of hydroxyl radicals (HO·) via photo-electro-reduction of oxygen by rerouting the electron transfer pathway was proposed. The rate-determining step of HO· production is the formation of H2O2 and the simultaneous reduction of H2O2. Engineering of F-TiO2 with single atom Pd bonded with four F and two O atoms favored the electrocatalytic 2-electron oxygen reduction to H2O2 with as high as 99% selectivity, while the additional channel bond HO-O···Pd-F-TiO2 facilitates the photogenerated electron transfer from the conduction band to single atom Pd to reduce Pd···O-OH to HO·. The optimized HO· production rate is 9.18 μ mol L-1 min-1, which is 2.6-52.5 times higher than that in traditional advanced oxidation processes. In the application of wastewater treatment, this proposed photoelectrocatalytic oxygen reduction method, respectively, shows fast kinetics of 0.324 and 0.175 min-1 for removing bisphenol A and acetaminophen. Around 93.2% total organic carbon and 99.3% acute toxicity removal were achieved. Additionally, the degradation efficiency was less affected by the water source and pH value because of the evitable usage of metallic active sites. This work represents a fundamental investigation on the generation rate of HO·, which would pave the way for the future development of photoelectrocatalytic technologies for water purification.
科研通智能强力驱动
Strongly Powered by AbleSci AI