检出限
Mercury(编程语言)
化学
荧光
水溶液
纳米材料
水溶液中的金属离子
三聚氰胺
无机化学
离子
纳米技术
材料科学
色谱法
有机化学
物理
程序设计语言
量子力学
计算机科学
作者
Qing Fu,Caicheng Long,Jiaoyan Huang,Sicong Liu,Taiping Qing,Peng Zhang,Bo Feng
标识
DOI:10.1016/j.jece.2021.106882
摘要
Mercury ions (Hg2+) owing to excessive discharge cause serious damage to human health and the water ecosystem via bioaccumulation in food chains. Novel materials employed for the high-performance monitoring of Hg2+ are urgently required. Herein, using sucrose, boric acid, and melamine as raw materials, a new nanomaterial sensor, namely boron and nitrogen co-doped carbon dots (B, N-CDs), was designed for fluorescent and colorimetric dual-mode detection of Hg2+. Because of the occurrence of both dynamic and static quenching, B, N-CDs were utilized to function as fluorescent sensors for detecting Hg2+ with a limit of detection (LOD) of 5.3 nM. B, N-CDs performed an action for catalytic oxidation of 3,3′,5,5′-Tetramethylbenzidine (TMB) to a blue cationic radical via peroxidase mimetic activity. By sequentially adding cysteine and Hg2+ to control the emergence of the TMB cation radical, a sensor for the Hg2+ assay was established through the colorimetric "on-off-on" signal and the LOD was as low as 7.8 nM. Moreover, the application potential of B, N-CDs for complex water environments was demonstrated to be excellent. In summary, the dual-mode detection method delivers some valid strategies for the detection of mercury in aqueous solutions employing the functional nanomaterials mentioned, and opens new avenues in tackling the problem of heavy metal ion pollution for environmental monitoring and remediation.
科研通智能强力驱动
Strongly Powered by AbleSci AI