Concrete crack segmentation based on UAV-enabled edge computing

计算机科学 GSM演进的增强数据速率 分割 人工智能 特征(语言学) 云计算 边缘检测 计算机视觉 棱锥(几何) 模式识别(心理学) 图像处理 图像(数学) 数学 哲学 语言学 几何学 操作系统
作者
Jianxi Yang,Hao Li,Junzhi Zou,Shixin Jiang,Ren Li,Xinlong Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:485: 233-241 被引量:22
标识
DOI:10.1016/j.neucom.2021.03.139
摘要

In recent years, the rapid development of UAV technology has greatly improved the efficiency of the detection of concrete bridge cracks. With the increase in the number of bridge inspection UAVs, the number of tasks handled by cloud services has increased linearly, resulting in increased computational pressure on cloud services. In order to reduce the computational load of cloud servers, we proposed a crack segmentation network based on UAV-enabled edge computing. However, due to the limitation of computational capability of edge computing and the strength inhomogeneity and background complexity of cracks, crack detection is still a challenging task. Thus, we proposed an effective concrete crack segmentation network based on UAV-enabled edge computing, the network used feature map fusion to fuse different levels of feature map information into lower-level features for crack detection. The atrous spatial pyramid pooling network was used to increase the low-resolution feature map receptive field information for cracks and to enhance the detection accuracy for cracks of different scales. In addition, loss functions for crack datasets were proposed to solve the problem of imbalance due to positive and negative samples in the concrete crack images. Experiments demonstrated that the proposed methods are better than the state-of-the-art edge detection and semantic segmentation methods in terms of accuracy and generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白完成签到,获得积分10
刚刚
1秒前
9℃发布了新的文献求助10
1秒前
甩看文献完成签到,获得积分10
1秒前
1秒前
欣喜书桃关注了科研通微信公众号
2秒前
2秒前
真实的熊猫完成签到,获得积分10
2秒前
小张不慌完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
十三完成签到,获得积分10
4秒前
juan发布了新的文献求助10
4秒前
丘比特应助白小白采纳,获得10
4秒前
4秒前
晓军发布了新的文献求助20
4秒前
5秒前
zxl完成签到,获得积分10
6秒前
专心搞学术完成签到,获得积分10
6秒前
FFF发布了新的文献求助10
6秒前
李小胖发布了新的文献求助20
6秒前
李健应助故意的绿竹采纳,获得10
6秒前
勤恳的断秋完成签到 ,获得积分10
7秒前
VDC发布了新的文献求助10
7秒前
7秒前
jasmine970000发布了新的文献求助100
7秒前
酷波er应助camellia采纳,获得10
8秒前
Zoe发布了新的文献求助10
8秒前
8秒前
8秒前
啊实打实完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
参上完成签到,获得积分10
11秒前
mingjie完成签到,获得积分10
11秒前
yam001完成签到,获得积分10
11秒前
aaaaa发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762