Concrete crack segmentation based on UAV-enabled edge computing

计算机科学 GSM演进的增强数据速率 分割 人工智能 特征(语言学) 云计算 边缘检测 计算机视觉 棱锥(几何) 模式识别(心理学) 图像处理 图像(数学) 数学 哲学 语言学 几何学 操作系统
作者
Jianxi Yang,Hao Li,Junzhi Zou,Shixin Jiang,Ren Li,Xinlong Liu
出处
期刊:Neurocomputing [Elsevier]
卷期号:485: 233-241 被引量:22
标识
DOI:10.1016/j.neucom.2021.03.139
摘要

In recent years, the rapid development of UAV technology has greatly improved the efficiency of the detection of concrete bridge cracks. With the increase in the number of bridge inspection UAVs, the number of tasks handled by cloud services has increased linearly, resulting in increased computational pressure on cloud services. In order to reduce the computational load of cloud servers, we proposed a crack segmentation network based on UAV-enabled edge computing. However, due to the limitation of computational capability of edge computing and the strength inhomogeneity and background complexity of cracks, crack detection is still a challenging task. Thus, we proposed an effective concrete crack segmentation network based on UAV-enabled edge computing, the network used feature map fusion to fuse different levels of feature map information into lower-level features for crack detection. The atrous spatial pyramid pooling network was used to increase the low-resolution feature map receptive field information for cracks and to enhance the detection accuracy for cracks of different scales. In addition, loss functions for crack datasets were proposed to solve the problem of imbalance due to positive and negative samples in the concrete crack images. Experiments demonstrated that the proposed methods are better than the state-of-the-art edge detection and semantic segmentation methods in terms of accuracy and generality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
myelin完成签到,获得积分10
1秒前
KoitoYuu发布了新的文献求助20
1秒前
5秒前
Becky发布了新的文献求助10
8秒前
大龙哥886完成签到,获得积分10
10秒前
星辰大海应助洛水桦采纳,获得10
11秒前
脑洞疼应助英勇小伙采纳,获得10
12秒前
15秒前
17秒前
哥斯拉发布了新的文献求助10
19秒前
脑洞疼应助Becky采纳,获得10
21秒前
21秒前
精明青寒发布了新的文献求助10
22秒前
24秒前
25秒前
KoitoYuu完成签到,获得积分10
28秒前
Becky完成签到,获得积分10
29秒前
30秒前
30秒前
orixero应助科研通管家采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
酷波er应助科研通管家采纳,获得10
31秒前
8R60d8应助科研通管家采纳,获得10
31秒前
研友_VZG7GZ应助科研通管家采纳,获得10
32秒前
8R60d8应助科研通管家采纳,获得10
32秒前
浅尝离白应助科研通管家采纳,获得30
32秒前
慕青应助科研通管家采纳,获得10
32秒前
32秒前
8R60d8应助科研通管家采纳,获得10
32秒前
大琦完成签到,获得积分20
36秒前
共享精神应助十一采纳,获得10
38秒前
40秒前
闪闪寒荷完成签到 ,获得积分10
41秒前
青出于蓝蔡完成签到,获得积分10
45秒前
46秒前
賢様666完成签到,获得积分10
46秒前
46秒前
mozhi给mozhi的求助进行了留言
47秒前
haowu发布了新的文献求助10
47秒前
傲娇蜻蜓发布了新的文献求助10
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129