亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics predicts risk of cachexia in advanced NSCLC patients treated with immune checkpoint inhibitors

恶病质 医学 无线电技术 内科学 肿瘤科 免疫疗法 癌症 肺癌 放射科
作者
Wei Mu,Evangelia Katsoulakis,Christopher J. Whelan,Kenneth L. Gage,Matthew B. Schabath,Robert J. Gillies
出处
期刊:British Journal of Cancer [Springer Nature]
卷期号:125 (2): 229-239 被引量:28
标识
DOI:10.1038/s41416-021-01375-0
摘要

Approximately 50% of cancer patients eventually develop a syndrome of prolonged weight loss (cachexia), which may contribute to primary resistance to immune checkpoint inhibitors (ICI). This study utilised radiomics analysis of 18F-FDG-PET/CT images to predict risk of cachexia that can be subsequently associated with clinical outcomes among advanced non-small cell lung cancer (NSCLC) patients treated with ICI. Baseline (pre-therapy) PET/CT images and clinical data were retrospectively curated from 210 ICI-treated NSCLC patients from two institutions. A radiomics signature was developed to predict the cachexia with PET/CT images, which was further used to predict durable clinical benefit (DCB), progression-free survival (PFS) and overall survival (OS) following ICI. The radiomics signature predicted risk of cachexia with areas under receiver operating characteristics curves (AUCs) ≥ 0.74 in the training, test, and external test cohorts. Further, the radiomics signature could identify patients with DCB from ICI with AUCs≥0.66 in these three cohorts. PFS and OS were significantly shorter among patients with higher radiomics-based cachexia probability in all three cohorts, especially among those potentially immunotherapy sensitive patients with PD-L1-positive status (p < 0.05). PET/CT radiomics analysis has the potential to predict the probability of developing cachexia before the start of ICI, triggering aggressive monitoring to improve potential to achieve more clinical benefit.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
7秒前
轻松板栗发布了新的文献求助30
12秒前
14秒前
17秒前
万能图书馆应助xing_采纳,获得10
24秒前
无花果应助清风朗月采纳,获得10
27秒前
27秒前
33秒前
Chemalan发布了新的文献求助10
35秒前
二三语逢山外山完成签到 ,获得积分10
36秒前
37秒前
41秒前
49秒前
50秒前
xing_完成签到,获得积分10
51秒前
53秒前
xing_发布了新的文献求助10
54秒前
zuko发布了新的文献求助30
1分钟前
1分钟前
cchh完成签到,获得积分20
1分钟前
1分钟前
Nancy完成签到,获得积分20
1分钟前
1分钟前
Nancy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
清风朗月发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
今后应助科研通管家采纳,获得10
1分钟前
科研通AI6应助Nancy采纳,获得10
1分钟前
大模型应助王威采纳,获得10
1分钟前
Jayem应助风中的尔曼采纳,获得10
1分钟前
上官若男应助清风朗月采纳,获得10
1分钟前
凸迩丝儿完成签到 ,获得积分10
2分钟前
科研圈外人完成签到 ,获得积分10
2分钟前
Raunio完成签到,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470003
求助须知:如何正确求助?哪些是违规求助? 4572974
关于积分的说明 14337893
捐赠科研通 4499855
什么是DOI,文献DOI怎么找? 2465445
邀请新用户注册赠送积分活动 1453789
关于科研通互助平台的介绍 1428357