Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

变压器 计算机科学 人工智能 分割 计算 像素 建筑 计算机视觉 图像分割 算法 电压 工程类 电气工程 艺术 视觉艺术
作者
Ze Liu,Yutong Lin,Yue Cao,Han Hu,Yixuan Wei,Zheng Zhang,Stephen Lin,Baining Guo
标识
DOI:10.1109/iccv48922.2021.00986
摘要

This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures. The code and models are publicly available at https://github.com/microsoft/Swin-Transformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助xinzhuoyang采纳,获得10
刚刚
秋程发布了新的文献求助10
刚刚
研友_YLBPgZ发布了新的文献求助10
1秒前
lallallallall应助能毕业采纳,获得10
1秒前
1秒前
2秒前
桐桐应助林途采纳,获得10
3秒前
华仔应助沐沐采纳,获得10
4秒前
5秒前
严不平完成签到,获得积分10
5秒前
5秒前
选择空间发布了新的文献求助10
6秒前
Brigitte完成签到,获得积分10
6秒前
研友_ZlxBXZ发布了新的文献求助10
6秒前
LiLi发布了新的文献求助10
6秒前
孤檠应助小菜采纳,获得30
6秒前
完美世界应助怡然雁凡采纳,获得10
6秒前
万颤完成签到,获得积分10
7秒前
7秒前
8秒前
刘巧明完成签到,获得积分10
8秒前
Dr.miao完成签到,获得积分10
8秒前
调皮蛋完成签到,获得积分10
8秒前
10秒前
10秒前
10秒前
Jasper应助HarryWando采纳,获得10
11秒前
11秒前
彭于彦祖应助1只肥熊采纳,获得30
12秒前
诸坤发布了新的文献求助10
12秒前
今后应助刘巧明采纳,获得10
13秒前
13秒前
SciGPT应助雯雯采纳,获得10
13秒前
14秒前
Owen应助庄周采纳,获得10
14秒前
华仔应助euphoria采纳,获得10
15秒前
Naxop完成签到,获得积分10
15秒前
啦啦啦发布了新的文献求助10
15秒前
科研通AI2S应助秋程采纳,获得10
16秒前
林途发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760